1,075 research outputs found

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    The Energy Spectrum of Primary Cosmic Ray Electrons in Clusters of Galaxies and Inverse Compton Emission

    Get PDF
    Models for the evolution of the integrated energy spectrum of primary cosmic ray electrons in clusters of galaxies have been calculated, including the effects of losses due to inverse Compton (IC), synchrotron, and bremsstrahlung emission, and Coulomb losses to the intracluster medium (ICM). The combined time scale for these losses reaches a maximum of ~3e9 yr for electrons with a Lorentz factor ~300. Only clusters in which there has been a substantial injection of relativistic electrons since z <~ 1 will have any significant population of primary cosmic ray electrons at present. In typical models, there is a broad peak in the electron energy distribution extending to gamma~300, and a steep drop in the electron population beyond this. In clusters with current particle injection, there is a power-law tail of higher energy electrons with an abundance determined by the current rate of injection. A significant population of electrons with gamma~300, associated with the peak in the particle loss time, is a generic feature of the models. The IC and synchrotron emission from these models was calculated. In the models, EUV and soft X-ray emission are nearly ubiquitous. This emission is produced by electrons with gamma~300. The spectra are predicted to drop rapidly in going from the EUV to the X-ray band. The IC emission also extends down the UV, optical, and IR bands with a fairly flat spectrum. Hard X-ray (HXR) and diffuse radio emission due to high energy electrons (gamma~10e4) is present only in clusters which have current particle acceleration. Assuming that the electrons are accelerated in ICM shocks, one would only expect diffuse HXR/radio emission in clusters which are currently undergoing a large merger.Comment: Accepted for publication in the Astrophysical Journal, with minor revisons to wording for clarity and one additional reference. 19 pages with 16 embedded Postscript figures in emulateapj.sty. Abbreviated abstract belo

    Peripheral elastic and inelastic scattering of O 17 , 18 on light targets at 12 MeV/nucleon

    Get PDF
    A study of interaction of neutron rich oxygen isotopes 17,18^{17,18}O with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction 13^{13}C(17^{17}O,18^{18}O)12^{12}C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17^{17}F(p,γ\gamma)18^{18}Ne which is essential to estimate the production of 18^{18}F at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the DWBA cross section calculations are warranted and stable against OMP used. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams before extending the procedures to rare ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17^{17}O, 18^{18}O and 16^{16}O projectiles is made.Comment: 14 pages, 19 figure

    Scattering of 7^{7}Be and 8^{8}B and the astrophysical S17_{17} factor

    Get PDF
    Measurements of scattering of 7^{7}Be at 87 MeV on a melamine (C3_{3}N6 _{6}H6_{6}) target and of 8^{8}B at 95 MeV on C were performed. For 7^{7}Be the angular range was extended over previous measurements and monitoring of the intensity of the radioactive beam was improved. The measurements allowed us to check and improve the optical model potentials used in the incoming and outgoing channels for the analysis of existing data on the proton transfer reaction 14^{14}N(7^{7}Be,8^{8}B)13^{13}C. The resultslead to an updated determination of the asymptotic normalization coefficient for the virtual decay 8^{8}B \to 7^{7}Be + pp. We find a slightly larger value, Ctot2(8B)=0.466±0.047C_{tot}^{2}(^{8}B)=0.466\pm 0.047 fm1^{-1}, for the melamine target. This implies an astrophysical factor, S17(0)=18.0±1.8S_{17}(0)=18.0\pm 1.8 eV\cdotb, for the solar neutrino generating reaction 7^{7}Be(pp,γ\gamma )8^{8}B.Comment: 7 pages, 4 figure

    Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions

    Get PDF
    The Trojan Horse method is a powerful indirect technique that provides information to determine astrophysical factors for binary rearrangement processes x+Ab+Bx + A \to b + B at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction a+Ay+b+Ba + A \to y+ b + B in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions based on the half-off-energy-shell R matrix approach which takes into account the off-energy-shell effects and initial and final state interactions.Comment: 6 pages and 1 figur

    Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction

    Get PDF
    The cross section of the radiative proton capture reaction on the drip line nucleus 12N was investigated using the Asymptotic Normalization Coefficient (ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12 MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction. The optical potentials used and the DWBA analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time with the transfer measurement. From the transfer, we determined the square of the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.

    Breakup of B-8 and the S-17 astrophysical factor reexamined

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/Existing experimental data for the breakup of B-8 at energies from 30 to 1000 MeV/nucleon on light through heavy targets are analyzed in detail in terms of an extended Glauber model. The predictions of the model are in excellent agreement with independent reaction data (reaction cross sections and parallel momentum distributions for corelike fragments). Final-state interactions have been included in the Coulomb dissociation component. We extract asymptotic normalization coefficients (ANC) from which the astrophysical factor S-17(0) for the key reaction for solar neutrino production, Be-7(p,gamma)B-8, can be evaluated. Glauber model calculations using different effective interactions give consistent, though slightly different results. The differences give a measure of the precision one can expect from the method. The unweighted average of all ANCs extracted leads to S-17(0)=18.7+/-1.9 eV b. The results of this new analysis are compared with the earlier one. They are consistent with the values from most direct measurements and other indirect methods

    Asymptotic Normalization Coefficients for 13C+p->14N

    Get PDF
    The 13C(14N,13C)14N^{13}C(^{14}N,^{13}C)^{14}N proton exchange reaction has been measured at an incident energy of 162 MeV. Angular distributions were obtained for proton transfer to the ground and low lying excited states in 14N^{14}N. Elastic scattering of 14N^{14}N on 13C^{13}C also was measured out to the rainbow angle region in order to find reliable optical model potentials. Asymptotic normalization coefficients for the system 13C+p14N^{13}C+p\to {}^{14}N have been found for the ground state and the excited states at 2.313, 3.948, 5.106 and 5.834 MeV in 14N^{14}N. These asymptotic normalization coefficients will be used in a determination of the S-factor for 7Be(p,γ)8B^{7}Be(p,\gamma)^{8}B at solar energies from a measurement of the proton transfer reaction 14N(7Be,8B)13C^{14}N(^{7}Be,^{8}B)^{13}C.Comment: 5 pages, 6 figure

    Radius of B-8 halo from the asymptotic normalization coefficient

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/The experimental asymptotic normalization coefficient determined from peripheral transfer reactions is used to obtain the root-mean-square radius of the wave function for the loosely bound proton in SB. It is shown that the asymptotic region contributes most and that matching of the interior wave function with the asymptotic part yields a nearly model-independent radius. We obtain [r(2)] (1/2) = 4.20 +/- 0.22 fm for the root-mean-square (rms) radius of the last proton, much larger than the rms radius of the Be-7 core. This large value and the fact that the asymptotic part of the proton wave function contributes 85% to the rms radius are good sign that B-8 is a halo nucleus

    Asymptotic normalization coefficient of ^{8}B from breakup reactions and the S_{17} astrophysical factor

    Get PDF
    We show that asymptotic normalization coefficients (ANC) can be extracted from one nucleon breakup reactions of loosely bound nuclei at 30-300 MeV/u. In particular, the breakup of ^{8}B is described in terms of an extended Glauber model. The 8B ANC extracted for the ground state of this nucleus from breakup data at several energies and on different targets, C^2 = 0.450+/-0.039} fm^-1, leads to the astrophysical factor S_{17}(0)= 17.4+/-1.5 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. The procedure described here is more general, providing an indirect method to determine reaction rates of astrophysical interest with beams of loosely bound radioactive nuclei.Comment: 4 pages, RevTex, 3 figures revised version to appear in Phys Rev Let
    corecore