39 research outputs found

    Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array

    Get PDF
    We investigate the relationship between seismic moment M0 and source duration tw of microearthquakes by using high-quality seismic data recorded with a vertical borehole array installed in central Taiwan. We apply a waveform cross-correlation method to the three-component records and identify several event clusters with high waveform similarity, with event magnitudes ranging from 0.3 to 2.0. Three clusters—Clusters A, B and C—contain 11, 8 and 6 events with similar waveforms, respectively. To determine how M0 scales with tw, we remove path effects by using a path-averaged Q. The results indicate a nearly constant tw for events within each cluster, regardless of M0, with mean values of tw being 0.058, 0.056 and 0.034 s for Clusters A, B and C, respectively. Constant tw, independent of M0, violates the commonly used scaling relation tw∝M1/30tw∝M01/3. This constant duration may arise either because all events in a cluster are hosted on the same isolated seismogenic patch, or because the events are driven by external factors of constant duration, such as fluid injections into the fault zone. It may also be related to the earthquake nucleation size

    On DLA's η

    Get PDF
    In his pioneering 1961 paper on seismic anisotropy in a layered earth, Don L. Anderson (hereafter referred to as DLA) introduced a parameter often referred to in global seismology as η without providing any reasoning. This note hopes to clarify the significance of η in the context of the dependence of body wave velocities in a transversely isotropic system on the angle of incidence, and also its relation with the other well-known anisotropic parameters introduced by Leon Thomsen in 1986

    Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition

    Get PDF
    Accurate determination of the seismometer orientation is a prerequisite for seismic studies including, but not limited to seismic anisotropy. While borehole seismometers on land produce seismic waveform data somewhat free of human-induced noise, they might have a drawback of an uncertain orientation. This study calculates a harmonic decomposition of teleseismic receiver functions from the P and PP phases and determines the orientation of a seismometer by minimizing a constant term in a harmonic expansion of tangential receiver functions in backazimuth near and at 0 s. This method normalizes the effect of seismic sources and determines the orientation of a seismometer without having to assume for an isotropic medium. Compared to the method of minimizing the amplitudes of a mean of the tangential receiver functions near and at 0 s, the method yields more accurate orientations in cases where the backazimuthal coverage of earthquake sources (even in the case of ocean bottom seismometers) is uneven and incomplete. We apply this method to data from the Korean seismic network (52 broad-band velocity seismometers, 30 of which are borehole sensors) to estimate the sensor orientation in the period of 2005−2016. We also track temporal changes in the sensor orientation through the change in the polarity and the amplitude of the tangential receiver function. Six borehole stations are confirmed to experience a significant orientation change (10°−180°) over the period of 10 yr. We demonstrate the usefulness of our method by estimating the orientation of ocean bottom sensors, which are known to have high noise level during the relatively short deployment period

    The inner core hemispheric boundary near 180°W

    Get PDF
    The inner core (IC) east–west hemispheric dichotomy is widely recognized, but the reported position of the hemispheric boundary varies among studies due to uneven sampling coverage and the data analyzed. This study investigates the sharpness of the western hemispheric boundary (WHB) near 180°W by analyzing differential time residuals of PKiKP–PKPdf and PKP(bc–df) for PKPdf phases that sample 155°E–130°W in various azimuthal directions. Using PKiKP–PKPdf observations, the WHB is located at 175°E–180°W in the southern hemisphere, based mainly on the lateral isotropy–anisotropy transition. However, based on the lateral isotropic velocity contrast and this isotropy–anisotropy transition between the two hemispheres, its location is 170–160°W in the northern hemisphere. These findings indicate that the WHB is sharp and exhibits a latitudinal dependence with a 10°–20° kink, as well as 1.75% anisotropy in the uppermost IC across the 180–155°W range of the western hemisphere. As suggested by PKP(bc–df), the WHB could remain at 160°W at depth. The isotropic velocity contrast near the WHB (160°W) between the eastern and western hemispheres is lower than previous estimates using PKPdf phases sampling the bulk part of each hemisphere

    Source Characteristics of the 2016 Meinong (ML 6.6) Taiwan Earthquake Revealed from Dense Seismic Arrays: Double Sources and Pulse-like Velocity Ground Motion

    Get PDF
    The 5 February 2016, Meinong, Taiwan, earthquake brought extensive damage to nearby cities with significant pulse‐like velocity ground motions. In addition to the spatial slip distribution determination using filtered strong‐motion data, we show that, with the advantage of the densely distributed seismic network as a seismic array, we can project the earthquake sources (asperities) directly using nearly unfiltered data, which is crucial to the understanding of the generation of the pulse‐like velocity ground motions. We recognize that the moderate but damaging ML 6.6 Meinong earthquake was a composite of an Mw 5.5 foreshock and an Mw 6.18 mainshock with a 1.8–5.0 s time delay. The foreshock occurred at the hypocenter reported by the official agency, followed by the mainshock with a centroid located at 12.3 km to the north‐northwest of the hypocenter and at a depth of 15 km. This foreshock–mainshock composition is not distinguishable in the finite‐fault inversion because it filtered the seismic data to low frequencies. Our results show that the pulse‐like velocity ground motions are mainly attributed to the source of mainshock with its directivity and site effects, resulting in the disastrous damages in the city of Tainan. Although finite‐fault inversion using filtered seismic data for spatial slip distribution on the fault has been a classic procedure in understanding earthquake rupture processes, using a dense seismic network as a seismic array for unfiltered records helps us delineate the earthquake sources directly and provide more delicate information for future understanding of earthquake source complexity

    Vibrio ostreae sp. nov., a novel gut bacterium isolated from a Yellow Sea oyster

    No full text
    A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic motile bacterium, designated strain OG9-811T, was isolated from the gut of an oyster collected in the Yellow Sea, Republic of Korea. The strain grew at 10–37 °C, pH 6.0–9.0 and with 0.5–10% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain OG9-811T affiliated with the genus Vibrio , with the highest sequence similarity of 98.2% to Vibrio coralliilyticus ATCC BAA-450T followed by Vibrio variabilis R-40492T (98.0 %), Vibrio hepatarius LMG 20362T (97.7 %) and Vibrio neptunius LMG 20536T (97.6 %); other relatives were Vibrio tritonius JCM 16456T (97.4 %), Vibrio fluvialis NBRC 103150T (97.0 %) and Vibrio furnissii CIP 102972T (97.0 %). The complete genome of strain OG9-811T comprised two chromosomes of a total 4 807 684 bp and the G+C content was 50.2 %. Results of analysis based on the whole genome sequence showed the distinctiveness of strain OG9-811T. The average nucleotide identity (ANI) values between strain OG9-811T and the closest strains V. coralliilyticus ATCC BAA-450T, V. variabilis R-40492T, V. hepatarius LMG 20362T, V. neptunius KCTC 12702T , V. tritonius JCM 16456T, V. fluvialis ATCC 33809T and V. furnissi CIP 102972T were 73.0, 72.6, 73.3, 73.0, 72.7, 78.5 and 77.8 %, respectively, while the digital DNA–DNA hybridization values between strain OG9-811T and the above closely related strains were 20.8, 21.2, 20.8, 21.7, 20.7, 23.2 and 22.4 %, respectively. The major fatty acids of strain OG9-811T were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain OG9-811T contained Q-8 as a quinone. On the basis of polyphasic taxonomic characteristics, strain OG9-811T is considered to represent a novel species, for which the name Vibrio ostreae sp. nov. is proposed. The type strain is OG9-811T (=KCTC 72623T=GDMCC 1.2610T)
    corecore