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Abstract 

The inner core (IC) east–west hemispheric dichotomy is widely recognized, but the reported 

position of the hemispheric boundary varies among studies due to uneven sampling coverage and 

the data analyzed. This study investigates the sharpness of the western hemispheric boundary 

(WHB) near 180°W by analyzing differential time residuals of PKiKP–PKPdf and PKP(bc–df) for 

PKPdf phases that sample 155°E–130°W in various azimuthal directions. Using PKiKP–PKPdf 

observations, the WHB is located at 175°E–180°W in the southern hemisphere, based mainly on 

the lateral isotropy–anisotropy transition. However, based on the lateral isotropic velocity contrast 

and this isotropy–anisotropy transition between the two hemispheres, its location is 170–160°W in 

the northern hemisphere. These findings indicate that the WHB is sharp and exhibits a latitudinal 

dependence with a 10°–20° kink, as well as 1.75% anisotropy in the uppermost IC across the 180–

155°W range of the western hemisphere. As suggested by PKP(bc–df), the WHB could remain at 

160°W at depth. The isotropic velocity contrast near the WHB (160°W) between the eastern and 

western hemispheres is lower than previous estimates using PKPdf phases sampling the bulk part 

of each hemisphere. 

 

Keywords: body waves; Earth’s inner core; east–west hemispheric variations; anisotropy 
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1. Introduction 

Aspherical structures in the Earth’s inner core (IC) are traditionally deduced from body-

waves and anomalous splitting of eigenfrequencies of normal-mode observations (Deuss, 2014; 

Tkalčić, 2015). Recent works have shown that the Green’s functions of body waves can be 

reconstructed from correlations between station pairs that record the diffusive wave fields produced 

by ambient noise and the coda waves of earthquakes, which provide observations of long-period P-

waves that sample the center of the IC for nearby station pairs (Huang et al., 2015; Wang et al., 

2015). P-wave velocity anisotropy in the IC is characterized by a fast direction aligned subparallel 

to the Earth’s rotation axis (ERA) and a slower direction in the equatorial plane. However, IC 

anisotropy varies as a function of depth, with notable differences between hemispheres, as follows: 

an isotropic layer in the upper IC (UIC) overlies an anisotropic lower IC (LIC) (Song and Xu, 

2002); the thickness of the isotropic UIC beneath the eastern hemisphere (EH) is 200–400 km, with 

weak anisotropy (0.5%) in the LIC (Niu and Wen, 2002); and the isotropic part of the UIC beneath 

the western hemisphere (WH) appears thinner, extends across a range of 20–250 km, and exhibits 

stronger anisotropy (2–8%) in the LIC (Tanaka and Hamaguchi, 1997; Creager, 1999; Ouzounis 

and Creager, 2001; Souriau and Poupinet, 2003; Irving and Deuss, 2011a; 2011b). Near the center 

of the IC, the direction of slow P-wave velocity appears to shift to 45°–51° from the equatorial 

plane, whereas the direction of fast P-wave velocity remains aligned along polar paths and also 

along the equatorial plane (Ishii and Dziewoński, 2002; Sun and Song, 2008b; 2008a; Wang et al., 

2015). Contrasts between hemispheres are also seen in isotropic velocity and attenuation structures 

in the upper 500 km of the IC, with high velocity and high attenuation beneath the EH (Niu and 

Wen, 2001; Tseng et al., 2001; Wen and Niu, 2002; Yu and Wen, 2006; Cormier, 2007; Monnereau 

et al., 2010; Waszek and Deuss, 2011; Tanaka, 2012; Attanayake et al., 2014); these features 

extend to the center of the IC (Lythgoe et al., 2014; Huang et al., 2015). East–west hemispheric 

boundaries have been defined by the longitude corresponding to the anisotropy boundary, the 

isotropic velocity boundary, and occasionally contrasts in absolute traveltime residuals (Lythgoe et 
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al., 2014). The eastern hemispheric boundary (EHB) beneath Africa ranges from 10–60°E, whereas 

the western hemispheric boundary (WHB) beneath the Pacific ranges from 160°E–151°W (Niu and 

Wen, 2001; Yu and Wen, 2007; Irving and Deuss, 2011a; Waszek and Deuss, 2011; Waszek et al., 

2011; Miller et al., 2013; Irving and Deuss, 2015). Near the center of the IC, the EWB and WHB 

are defined in the range 40–88°E and 95–99°W, respectively (Lythgoe et al., 2014; Huang et al., 

2015). 

 

A well-defined hemispheric boundary (HB) is important for two reasons. First, the HB 

geometry could be used to refine the lateral boundary conditions used in modeling IC dynamics 

(Deguen, 2012). Second, a precise HB could be used as a marker to track the motions of the IC and 

to estimate its rotation or oscillation rate (Souriau and Poupinet, 2000; Collier and Helffrich, 2001; 

Zhang et al., 2005; Waszek et al., 2011; Tkalčić et al., 2013; Yu, 2016). Waszek et al. (2011) and 

Waszek and Deuss (2011) previously analyzed a large dataset of PKiKP–PKPdf differential 

traveltime residuals to define the HB in the uppermost IC. However, a high positive PKiKP–PKPdf 

differential time with PKPdf taking polar paths could be interpreted as an effect of either a high 

isotropic velocity EH or an anisotropic WH in the uppermost IC; this choice of interpretation 

directly impacts the inferred location of the HB. Presumably because previous researchers intended 

to minimize the potential for misinterpretation, polar PKiKP–PKPdf residuals were excluded from 

their attempts to resolve the HB. The polar–equatorial differences are visible near 180°W in their 

data, with overlapping df rays (e.g., fig. 5b of Waszek and Deuss 2011). However, these anomalous 

polar PKiKP–PKPdf residuals are necessary to define the HB and are useful in discussing 

anisotropy in the uppermost IC. In this study, we determine the WHB in the shallow part of the IC 

specifically by analyzing PKPbc–PKPdf (herein denoted PKP(bc–df)) along equatorial paths and 

the azimuthal dependence of the differential time residuals of PKiKP–PKPdf. We show that the 

anomalous polar PKiKP–PKPdf residuals extend westward across the range 180–155°W, which 

indicates anisotropy beneath the WH in the uppermost IC with a WHB located at 180°W in the 
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southern hemisphere. We find that the placement of the WHB in the southern and northern 

hemispheres is not located at the same meridian, indicating a kink in the WHB with respect to 

latitude. We assess both the uncertainties and precision of laterally shifting the WHB on differential 

time residuals across the longitudinal range sampled by PKPdf. We examine the impact of 

heterogeneous mantle structures on the PKiKP–PKPdf and PKP(bc–df) differential times using the 

GyPSuM P-wave tomographic model (Simmons et al., 2010). Finally, we discuss how the derived 

WHB locations compare with those inferred in previous works. 

 

2. Seismic data and measurements of traveltime residuals 

Here, PKIKP (or PKPdf, herein abbreviated as df) denotes a P-wave that propagates 

through the IC, PKiKP (PKPcd) denotes a P-wave that reflects off the inner core boundary (ICB), 

and PKPbc (abbreviated bc) is a P-wave that propagates through the bottom of the outer core (OC). 

The raypaths of df and PKiKP, and df and bc remain close throughout the Earth’s mantle (Fig. 1a), 

and their traveltime differences are primarily sensitive to structures near the ICB and in the UIC. 

PKP waveform data were collected for mb 5.5–6.7 earthquakes from January 1995 to September 

2016. The selected PKP data are produced by earthquakes that occurred in the circum-Pacific, 

toward the Sunda subduction zone (Fig. S1). A total of 1045 PKiKP–PKPdf and 4328 PKP(bc–df) 

waveforms were selected, with df sampled across the longitude range 155°E–130°W. Note that the 

Polenet seismic network (code YT) was deployed across Antarctica from 2008 to 2016 (Wiens et 

al., 2007). The broad longitudinal transect of the YT network preferentially recorded df waves that 

sampled the IC over the longitudinal range 160°E < φ < 155°W along quasi-polar paths (defined by 

an angle ξ < 40° between df and ERA) for earthquakes that occurred at high latitudes in the north 

Pacific (Figs. 1b, S1a, and S1b). Some of the observed PKiKP–PKPdf times for df waveforms 

recorded by the YT network are larger than others along equatorial paths, which we interpret as 

anisotropy in the uppermost 80 km of the IC. Anisotropy beneath this region has not been 

documented in recent studies. Note also that most of the selected PKP(bc–df) traveltimes were 
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from intermediate to deep earthquakes that occurred in subduction zones of the southwest Pacific, 

recorded by densely deployed seismographs in Europe (Figs. 1c and S1c). These sampling paths 

were previously used to investigate seismic structures near 180°W in the deeper part of the IC 

(Souriau and Poupinet, 2000; Collier and Helffrich, 2001; Helffrich et al., 2002; Irving and Deuss, 

2015). 

 

We analyze PKiKP–PKPdf traveltime differences in the epicentral distance range ∆ = 131°–

141° and PKP(bc–df) in the range ∆ = 146.7°–152°. All waveform data are convolved with a zero-

phase two-pole Butterworth bandpass filter with corner frequencies of 0.5 Hz and 2.0 Hz. We 

manually pick the maximum amplitudes of the df, bc, and PKiKP pulses, and select a 3.00 s time 

window centered on each pick for time-domain cross-correlation, in which the time series are 

interpolated to a higher sampling interval of 10 milliseconds. Differential traveltime residuals are 

the observed differential times of PKiKP–PKPdf and PKP(bc–df) subtracted from values predicted 

by the AK135 model (Kennett et al., 1995), denoted by dt(PKiKP–PKPdf) and dt(bc–df), 

respectively. Differential time residuals are corrected for path differences due to Earth’s ellipticity 

(Kennett and Gudmundsson, 1996). dt(bc–df) values are additionally corrected for the time delay 

due to mantle heterogeneities using the GyPSuM P-wave tomographic model (Simmons et al., 

2010) to lessen the impact of regional-scale lower mantle structures on dt. 

 

3. Observed PKiKP–PKPdf traveltime residuals 

Along equatorial paths (ξ ≥ 40°) where dt(PKiKP–PKPdf) times are insensitive to 

anisotropy in the uppermost IC, dt(PKiKP–PKPdf) times fall mainly within ±0.30 s when df 

samples the IC in the range 160°E–170°W. Farther west of 167.5°W, dt(PKiKP–PKPdf) times 

become predominantly negative (means and 1σ uncertainties listed in Table 1). Positive dt times 

are interpreted as the result of a faster UIC than the AK135 model predicts. The small dt(PKiKP–

PKPdf) values of ±0.30 s in the EH indicate that the uppermost IC structures predicted by AK135 
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resemble the EH reasonably well. Since the WH is characterized by a slower isotropic velocity in 

contrast to the faster EH in the UIC, therefore, we suggest that the transition of the WHB could be 

suitably placed at 170–160°W (WHB drawn at 160°W in Figs. 1b and 2a), consistent with previous 

estimates of 173–160°W (Waszek et al., 2011). 

 

Along quasi-polar paths (ξ < 40°) where dt(PKiKP–PKPdf) times reflect anisotropy in the 

uppermost IC, dt(PKiKP–PKPdf) values exhibit a laterally increasing trend from 160°E to 155°W. 

The residuals of the phases that trace polar raypaths from 160 to 175°E are slightly larger than 

those of phases that trace equatorial raypaths. This suggests that the uppermost IC across 160–

175°E is nearly isotropic. Farther westward, from 175°E to 155°W, the magnitude of the polar 

dt(PKiKP–PKPdf) increases with increasing distance west, from +0.46 s to +1.67 s, and becomes 

larger than most equatorial dt(PKiKP–PKPdf) values for df that sample the EH and WH (Figs. 1b 

and 2a and Table 1). Such longitudinally dependent polar dt(PKiKP–PKPdf) values are also clearly 

visible in the observed waveforms. In Fig. 3, traces 1–3 are PKiKP–PKPdf that sample the IC near 

180°W at similar distances; and traces 4–7 and 8–10 are PKiKP–PKPdf that sample the IC from 

175–170°W and 168–144°W, respectively. Several polar dt(PKiKP–PKPdf) that sample from 

175°W–155°W are >0.50 s, even at ∆ < 137° (i.e., sampling only the uppermost 50 km of the IC). 

One argument that supports our interpretation of anisotropy in the uppermost IC is that in some 

regions near 10°S, 175–160°W, and 20–40°N, 180–155°W, there exist crossing df rays aligned in 

both the equatorial and polar directions (Fig. 1b). To delineate anisotropy in the IC, we can use the 

formulation of Sun and Song (2008b):  

δV

V
= α + ε cos2 ξ +γ sin2 2ξ  ,        (1) 

where α is the velocity perturbation in the equatorial plane, ε is the perturbation in the polar 

direction, and γ contributes to anisotropy at intermediate angles. From Equation (1), we derived 

anisotropy by fitting the trend of dt(PKiKP–PKPdf) as a function of ξ (Fig. 4). For the region 

spanning 180–155°W, best-fitting α, ε, and γ values of −0.13, 1.75, and −0.95, respectively, were 
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obtained (Fig. 4a). For the region spanning 160°E–180°W, best-fitting α, ε, and γ values of −0.04, 

0.25, and −0.08, respectively, were obtained (Fig. 4b). These best-fitting parameters from Equation 

(1) yield 1σ uncertainties of 0.14 s and 0.28 s for the regions spanning 160°E–180°W and 180–

155°W, respectively. The ε values indicate anisotropy of 1.75% and 0.25% for the regions 180–

155°W and 160°E–180°W in the uppermost 80 km of the IC, respectively. Based on a priori 

knowledge of an anisotropic WH and an isotropic EH, we thus infer the region of 180–155°W to be 

the WH; the WHB could be reasonably placed at 175°E–180°W (WHB drawn at 180°W in Figs. 1b 

and 2a). The lateral transition from isotropic EH to anisotropic WH is very sharp, occurring over a 

range of 5°–10° in the uppermost IC. Note that placing of the WHB at 170°W could minimize the 

uncertainties of the polar dt(PKiKP–PKPdf) whose df sampling extends across the east–west inter-

hemispheres in the northern hemisphere (see the following section). Such a shift of the WHB from 

180 to 170°W has a negligible influence on our inferred values of anisotropy for the EH and WH, 

because the sparse polar PKiKP–PKPdf sampling in the northern hemisphere and those dt(PKiKP–

PKPdf) times with values >1.00 s arise from df turning longitudes located farther west (160–

155°W) of the WHB zone (Fig. 1b). 

 

4. Observed PKP(bc–df) traveltime residuals 

Observed dt(bc–df) values are scattered for df sampling along equatorial paths. We first 

position the WHB at 160°W, derived from dt(PKiKP–PKPdf) for df phases sampling along 

equatorial paths. dt(bc–df) values display a weak lateral gradient of 0.002 s/°, decreasing westward 

from 155°E to 160°W of the EH. Farther westward, from 160°W to 130°W of the WH, the 

westward-decreasing lateral gradient steepens to 0.012 s/° (green dotted lines in Fig. 2b). An 

assessment of the suitable placement of the WHB over a range of longitudes is presented in the 

next section. 

 

5. Further assessment of the location and uncertainties of the WHB 
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5.1 Treatment for PKPdf rays traversing the east–west inter-hemispheres of the IC 

We inferred the initial location of the WHB using the AK135 one-dimensional (1-D) 

reference velocity model. However, since the effect of df sampling the east–west (EW) inter-

hemispheres of the IC cannot be treated with a 1-D velocity model, this may yield unquantifiable 

uncertainties for the determined WHB. One recent study considered the effect of df traversing 

through the EW inter-hemispheres when inverting for isotropic velocity and anisotropy of the IC 

beneath the north Pacific (Irving and Deuss, 2015), where the df ray was divided into down- and 

up-going rays and different velocity structures were allowed for the two segments of the df ray to 

invert for the structures across the WHB of the IC. Here we take a different approach to account for 

the effect of df traversing the EW inter-hemispheres of the IC. We first derive two 1-D isotropic 

velocity models, mE2 and mW2, for the EH and WH in the upper 300 km of the IC, respectively, 

by determining the best-fitting equatorial dt(PKiKP–PKPdf) and dt(bc–df) times as a function of 

distance ∆. For a given WHB position, we compute the length and percentage of the df ray 

confined in the EH and WH. The df traveltimes in the EH and WH of the IC are proportional to the 

percentage of df ray length traveling in the EH and WH, which are computed from mE2 and mW2, 

respectively. The differential time residuals of PKiKP–PKPdf and PKP(bc–df) are thus based on 

mE2 and mW2. By shifting the position of the WHB from 170°E to 140°W, we examine how the 

means and root-mean-square (RMS) residuals of dt(PKiKP–PKPdf) and dt(bc–df) vary with WHB 

position for longitudinal bins spanning 155°E–130°W. The optimal position of the WHB is then 

inferred from the observed minima in the means and RMS residuals across the range of 

longitudinal bins.  

 

5.2 Derivation of 1-D velocity models for the eastern and western hemispheres of the IC 

Previous seismic studies have inferred velocity models for the EH and WH of the IC (Wen 

and Niu, 2002; Yu and Wen, 2006; Sun and Song, 2008b; Cormier et al., 2011; Irving and Deuss, 

2011a; Waszek and Deuss, 2011; Tanaka, 2012; Attanayake et al., 2014). The 1-D velocity models 
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E1 and W2 for the EH and WH, respectively, derived from Yu and Wen (2006), were used in the 

present study. We use E1 and W2 as starting IC models for the two hemispheres to fit dt(PKiKP–

PKPdf) and dt(bc–df). It is noted that the E1 and W2 models have subtle differences in P-wave 

velocity structures in the lowermost OC (Yu et al., 2005). However, such a difference in velocity in 

the lowermost OC between the two hemispheres may not be seismically resolvable due to the 

scatter in the observed differential time data (Cormier et al., 2011). Since our goal here is to 

investigate the position of the WHB of the IC, the OC is assumed to have identical baseline 

structures between the two hemispheres, to avoid complicated interpretations. Although the two 

derived 1-D velocity models for the EH and WH of the IC may be non-unique, we emphasize that 

our aim is to use the mE2 and mW2 modified isotropic velocity models to approximate the df times 

propagating through the EH and WH, and to take into account the effect of the df rays traversing 

the EW inter-hemispheres of the IC. E1 yields slightly faster times to account for the observed 

dt(PKiKP–PKPdf), but the modeled times are too fast to account for dt(bc–df) of the EH along 

equatorial paths by 0.3 s, whereas W2 yields slightly slower times to explain dt(PKiKP–PKPdf) 

and dt(bc–df) for df rays sampling the WH (Figs. S2a and S2c). Since the velocity gradient in the 

lowermost OC of W2 is similar to that of AK135, we adopt the mantle and OC structures of W2 

and modify the velocity models of the IC for the EH and WH, producing our mE2 and mW2 

models. For the mE2 model, we reduce the velocity step across the ICB, extending the same 

velocity gradient of E1 to the deeper part of the IC. The mE2 model can efficiently lower the 

model-predicted dt(bc–df) to fit the means of observations over ∆ = 147°–152°, and also reasonably 

account for dt(PKiKP–PKPdf) over ∆ = 131°–135°, but it still slightly over-predicts observations 

over ∆ = 136°–141°. Velocity structures in the uppermost IC, decreased to fit dt(PKiKP–PKPdf) of 

the EH over ∆ = 136°–141°, will be expected to produce even smaller dt(bc–df), and thus increase 

the misfit to the observed dt(bc–df). For the WH, the mW2 model has a slightly higher velocity step 

across the ICB and maintains the same velocity gradient of W2 in the upper 300 km of the IC, 

which fits dt(PKiKP–PKPdf) and dt(bc–df) values reasonably well (Figs. S2a, S2c, and S2d). Note 
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that mE2 and mW2 still under-predict the polar dt(PKiKP–PKPdf) of the EH and WH to different 

degrees (Fig. S2b). 

  

5.3 Precision and uncertainties of the determined WHB 

We examine the sensitivity and uncertainties of the laterally varying WHB on dt(PKiKP–

PKPdf) along equatorial and polar paths (Figs. 5 and 6). For dt(PKiKP–PKPdf) along equatorial 

paths and over longitudinal bins spanning 170°E–160°W, the westward shift of the WHB from 

170°E to 160°W could progressively lower dt(PKiKP–PKPdf) values and their respective means 

(Figs. 5a–5d). In the case of the WHB positioned at 170°E, the regions westward of 170°E would 

be attributed to the WH (Fig. 5a). Because df rays propagating through this region would have 

modeled times based on the slower mW2 model, positive dt(PKiKP–PKPdf) times are observed for 

the longitudinal bins spanning 170°E–160°W (Fig. 5a). For the WHB positioned at either 170°W or 

160°W, means of dt(PKiKP–PKPdf) relative to the model-predicted times fluctuate around zero 

over broad longitudinal bins, indicating that the mE2 and mW2 models perform reasonably well in 

approximating the df time traversing the EH, WH, and EW inter-hemispheres (Figs. 5c and 5d). 

Placing the WHB westward at 150°W and 140°W yields negative values for most dt(PKiKP–

PKPdf) and their means over longitudinal bins spanning 170–140°W, because mE2 is too fast for 

dt(PKiKP–PKPdf), whose df rays are turning through this part of the defined ‘EH’ (Figs. 5e and 5f). 

Figs. 5g and 5h display the means and RMS residuals of dt(PKiKP–PKPdf) relative to the modeled 

values for the westward shift of the WHB from 170°E to 140°W. Means and RMS residuals of 

dt(PKiKP–PKPdf) calculated within a 10° longitudinal bin for each position of the WHB are 

plotted side by side as different colors. Previously discussed scenarios for variations in the means 

of dt(PKiKP–PKPdf) corresponding to the shift of the WHB from 170°E to 140°W are illustrated 

by the bars in the longitudinal bins in Fig. 5g. When the WHB is positioned at 170–160°W, 

minimum means and RMS residuals of dt(PKiKP–PKPdf) are often observed over the same 

longitudinal bins (red and light blue bars in Figs. 5g and 5h). Thus, the optimal position of the 
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WHB would be 170–160°W to account for dt(PKiKP–PKPdf) whose df sampling the EH are 

separated from the WH along equatorial paths, which is consistent with our earlier inferences. 

 

A lateral increase is observed in both the means and RMS residuals of the polar dt(PKiKP–

PKPdf) calculated relative to the modeled times across 180°W (Figs. 6g and 6h). While shifting the 

WHB farther westward could lower the means and RMS residuals over certain longitudinal bins, 

those values are still notably larger than those over the region spanning 160°E–180°W. For 

instance, placing the WHB at 160°W would produce lower means and RMS residuals over 180–

170°W compared with those at 180°W, but the means of polar dt are still larger than those over 

160°E–180°W by 0.4–0.6 s, producing the strong contrast in means and RMS residuals of dt 

between 160°E–180°W and 180–160°W within the defined ‘EH’ (Fig. 6d, and red bars in Figs. 6g 

and 6h). Our uncertainty analysis of the polar dt(PKiKP–PKPdf) due to laterally shifting the WHB 

suggests that placing the WHB at 180°W is optimal to distinguish the observed dt(PKiKP–PKPdf) 

for df sampling the isotropic EH from the anisotropic WH, which is consistent with our earlier 

inferences. 

 

For the equatorial dt(bc–df), shifting the WHB across the 180–140°W region is examined 

through analysis of the means and RMS residuals of dt(bc–df) over longitudinal bins spanning 

155°E–130°W (Fig. S3). With the exception of placing the WHB at 180°W, which produces a 

larger RMS residual over 180–170°W (gray bars in Fig. S3g), the RMS residuals are not diagnostic 

enough to examine the effect of the WHB on dt(bc–df) over 180–160°W (Fig. S3g). However, 

placing the WHB at 170–160°W produces slight minimum means over bins spanning 180–160°W 

(red and light blue bars in Fig. S3f). The position of the WHB at depth could be placed at 160°W, 

but this is less definitive due to scattered PKP(bc–df). 

 

6. Discussion 
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6.1 Mantle effects 

The Fresnel zone is ~150 km in the lowermost mantle for PKP waves at 1 Hz. For the 

PKiKP–PKPdf phases, the two rays are separated by ~50 km at the core–mantle boundary (CMB), 

and the Fresnel zones of these two phases overlap (e.g., fig. 12 of Yu and Wen 2007). Seismic 

heterogeneities near the CMB should thus have a negligible influence on observed dt(PKiKP–

PKPdf). We examine the mantle effects on dt(PKiKP–PKPdf) using the GyPSuM P-wave 

tomographic model, and observe that mantle structures within the GyPSuM model produce null 

effects on dt(PKiKP–PKPdf) (Fig. S4a). For the PKP(bc–df) phases, the separations of the two rays 

are ~300 km (~5°) at the CMB, approximately double the size of the Fresnel zone. Any isolated 

low-velocity structures with wavelengths of 3°–5° at the CMB could influence only the bc or df ray. 

In this scenario, both positive (exclusively delaying bc) and negative (delaying df) dt(bc–df) would 

be observed over short distances. Across the region spanning 155°E–180°W, the GyPSuM model 

predicted dt(bc–df) values range from –0.2 s to +0.5 s, and also exhibit a westward-decreasing 

trend. Farther westward of 170°W, the majority of the predicted dt(bc–df) values are within ±0.2 s 

(Fig. S4b). dt(bc–df) relative to the reference velocity model AK135, without time shift corrections 

due to heterogeneous mantle structures of the GyPSuM model, yield a slightly steeper westward-

decreasing gradient of 0.005 s/° (not shown) when compared with dt(bc–df) relative to AK135 with 

the time shift corrections of the GyPSuM model, which yields a lateral gradient of 0.002 s/° (Fig. 

2b). Regional-scale structures in the lowermost mantle have a potential influence on dt(bc–df), and 

could mask or distort signals arising from the IC structures. 

 

6.2 Latitudinal dependence of the WHB 

There are discrepancies in the WHB longitude estimates derived from equatorial and polar 

dt(PKiKP–PKPdf) data, and placing the WHB at either 170–160°W or 180°W conflicts with a 

subset of observations of the known behaviors of the EH and WH. One explanation is a 10°–20° 

transition zone where UIC anisotropy increases rapidly with distance from 180 to 170–160°W. 
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Alternatively, one could invoke a kink in the WHB to account for dt(PKiKP–PKPdf) observations 

whose df sample different locations in the southern and northern hemispheres. We assess the 

uncertainties associated with a lateral shift of the WHB on dt(PKiKP–PKPdf) for which df samples 

the northern and southern hemispheres, as carried out previously and shown in Figs. 5, 6, and S3. 

We first place a north–south division at 8°N. The equatorial and polar dt(PKiKP–PKPdf) are 

examined to determine their uncertainties associated with laterally shifting the WHB, which is 

dependent on the resultant df sampling through the northern (8–90°N) and southern (90°S–8°N) 

hemispheres. However, it should be noted that the uneven sampling coverage in the northern 

hemisphere means that the majority of the observed dt(PKiKP–PKPdf) are governed predominantly 

by rays along equatorial paths (Fig. S5a), whereas in the southern hemisphere, the majority of the 

dt(PKiKP–PKPdf) data arise from df sampling along polar paths (Fig. S5d). For the equatorial 

PKiKP–PKPdf whose df sample the northern hemisphere, placing the WHB at 160°W produces 

minimal means and RMS residuals over 180–160°W (red bars in Figs. 7a and 7b). For the 

equatorial dt(PKiKP–PKPdf) whose df sample the southern hemisphere, the WHB at 180–170°W 

appears to generate minimal means over bins 180–160°W (gray and light blue bars in Fig. 7c). For 

the polar dt(PKiKP–PKPdf), the means and RMS residuals exhibit a lateral increase at 170°W and 

180°W for the northern and southern hemispheres, respectively (Fig. 8). Our assessment of the 

uncertainties associated with dt(PKiKP–PKPdf) for df sampling along equatorial and polar paths 

suggests a latitudinal dependence of the WHB, with the WHB positioned near 170–160°W in the 

northern hemisphere and 180°W in the southern hemisphere. 

 

Our inferred latitudinal dependence of the WHB is illustrated in Fig. 9 and listed in Table 2. 

The WHB can be placed at 175°E–180°W in the southern hemisphere (35°S–8°N). The WHB 

could deviate slightly eastward from 180°W, 35°S to 175°E, 8°N, to separate the nearly isotropic 

EH from the moderately anisotropic WH. Two likely scenarios arise when extending the WHB 

northward from 175°E, 8°N (Figs. 9a and 9b). For the isotropic structures, the WHB first requires a 
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westward-deviating kink at 160°W, 30°N, followed by a fixed meridian at 160°W in the northern 

hemisphere (30–90°N), to distinguish the faster EH from the slower WH (yellow solid-black dotted 

line in Figs. 1b and 9a). The isotropic velocity of the EH is 0.13% faster and the WH is 0.43% 

slower than that of the AK135 model. Our estimated isotropic velocity contrast is 0.56% between 

the EH and WH near the WHB (160°W) (Fig. 9a), which is lower than the previous estimates of 

1.0%–1.4% for the bulk part of the EH and WH (Wen and Niu, 2002; Waszek and Deuss, 2011). 

The smaller contrast of the isotropic velocity near the WHB is due to the isotropic velocity of the 

EH and WH near the WHB is of about 0.27% slower and 0.17% faster than that estimated for the 

bulk part of the EH and WH, respectively (Figs. 9a and S2d). For the anisotropic structures, the 

westward-deviating kink in the WHB could be placed at 170°W, 30°N, followed by a fixed 

meridian at 170°W in the northern hemisphere, to distinguish the nearly isotropic EH from the 

moderately anisotropic WH, with 0.25% and 1.75% anisotropy for the EH and WH, respectively 

(Figs. 4 and 9b). Such a WHB with a kink seems ad hoc and subjective; however, it could 

minimize the uncertainties of the observed dt(PKiKP–PKPdf), as well as reconcile most observed 

dt(PKiKP–PKPdf) values with known patterns for the eastern and western hemispheres of the UIC. 

In the deeper part, the WHB location is less definitive and could remain at 160°W. The isotropic 

velocities for the EH and WH are 0.049% and 0.043% higher than those in the AK135 model, 

respectively. Our estimate for the isotropic velocity contrast between the EH and WH near the 

WHB (160°W) at depth is also lower than the previous estimate of 0.4% for the bulk part of the EH 

and WH (Fig. 9c) (Yu and Wen, 2006). Our analyses indicate that the WHB is latitude-dependent 

in the uppermost IC, but depth-independent for isotropic structures in the upper 300 km of the IC. 

 

6.3 Depth-dependent fine structures near the WHB of the IC 

It has been suggested that stratified structures in the IC, such as the depth-dependence on 

attenuation (Li and Cormier, 2002; Yu and Wen, 2006), the isotropic UIC–anisotropic LIC 

transition (e.g., Niu and Wen, 2002; Irving and Deuss, 2011b; Tkalčić, 2015), the hemispheric 
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boundary (Waszek et al., 2011), and the regional-scale anomalous layer in the UIC (Stroujkova and 

Cormier, 2004), reveal sophisticated seismic structures over the depth of the IC. Here we examine 

the depth-dependence of fine structures over the region spanning 155°E–130°W by plotting 

dt(PKiKP–PKPdf) and dt(bc–df) as a function of df turning depth in the IC (Fig. S5). We also 

divide our PKiKP–PKPdf data along equatorial and polar paths into df sampling located in the 

northern and southern hemispheres. Note that the Fresnel zone is 200 km and 300 km in the upper 

80 km and 150–300 km of the IC, respectively, for PKPdf waves at 1 Hz. Except for the contrast in 

dt(PKiKP–PKPdf) near the WHB, depth-dependent fine structures are obscure in the upper 300 km 

of the IC.  

 

6.4 Comparisons with previous results 

Many previous studies have attempted to map the boundary between the two hemispheres of 

the IC. Seismic phases analyzed in previous works include PKiKP–PKPdf differential times (Niu 

and Wen, 2001; Waszek et al., 2011), PKP(bc–df) (Tanaka and Hamaguchi, 1997), and PKP(bc–df) 

and PKP(ab–df) along polar and equatorial paths (Creager, 1999; Irving and Deuss, 2011a). The 

exact locations of the WHB vary from an early estimate of 160°E (Creager, 1999) to a recent 

estimate of 151°W (Irving and Deuss, 2011a). The discrepancies among the inferred WHB values 

could arise from the sensitivity of PKP differential times, inadequate data, sparse raypath coverage, 

misinterpretations of polar df traveltimes due to a faster EH or an anisotropic WH, or different 

reference velocity models. PKP(bc–df) times largely avoid the uncertainties due to large-scale 

lateral structures in the lowermost mantle, as the latter have a much greater influence on PKPab. 

Polar PKP(bc–df) times with a confined longitudinal extent allow more precise constraints on the 

WHB than equatorial PKP(bc–df) times, because equatorial df rays traverse the EW inter-

hemispheres at depths of the IC. However, polar PKP(bc–df) sampling near the WHB is often 

insufficient and uneven, leading to a net uncertainty of 50° in the WHB location (Creager, 1999; 

Irving and Deuss, 2011a). PKiKP–PKPdf offers an optimal dataset for determining the position of 



  

 17

the WHB, because the short lengths of the df rays in the uppermost IC both lower the effect of EW 

inter-hemispheres sampled by df, and dt(PKiKP–PKPdf) are insensitive to the regional-scale 

structures in the lowermost mantle (Fig. S4a), resulting in more focused dt(PKiKP–PKPdf) 

compared with dt(bc–df). Our inferred WHB in the northern hemisphere, near 170–160°W, is 

consistent with recent estimates of 173–160°W (Waszek and Deuss, 2011; Waszek et al., 2011). 

The main difference between these previous studies and this work is that the sampling coverage of 

the polar PKiKP–PKPdf is improved in the range 180–155°W here, which reveals the sharp lateral 

isotropy–anisotropy transition and helps place the WHB at 180°W in the southern hemisphere. We 

also emphasize that positive, laterally varying dt(PKiKP–PKPdf) values along polar paths reflect 

variations in anisotropy beneath the Pacific in the uppermost IC, rather than the effects of a high 

isotropic velocity EH, because the mE2 isotropic model slightly under-predicts those polar 

dt(PKiKP–PKPdf) of the EH and considerably under-predicts nearly all polar dt over the 180–

155°W range of the WH (Figs. S2b and 6). 

 

In fact, an irregular and latitudinally dependent WHB beneath the Pacific has been implied 

by several recent studies using PKP(bc–df) (Miller et al., 2013; Irving and Deuss, 2015). Irving and 

Duess (2015) observed dt(bc–df) with values of +0.5 to +1.5 s using df sampling in the region 15–

30°N, 180–150°W along polar paths (their Fig. 2). Because they adopted a straight WHB at 151°W 

from Irving and Duess (2011a), the region bounded by 180–150°W would correspond to their 

defined EH. The observed positive dt(bc–df) values along polar paths imply that the EH is 

moderately anisotropic at depth within the IC. If we adopt our inferred latitudinal dependence of 

the WHB, most variations in their PKP(bc–df) in the region 15–30°N, 180–150°W could be 

attributed to the WH, which is more compatible with other interpretations of anisotropy beneath the 

WH at depth (Tanaka and Hamaguchi, 1997; Creager, 1999; Deuss, 2014). Hence, our inferred 

WHB could also partly reconcile the previous interpretations.  

 



  

 18

In addition, Irving and Deuss (2015) suggested that the hemispheric anisotropic velocity 

structures beneath the Pacific would be altered with a priori knowledge of an anisotropic WH and 

an isotropic EH once the presence of IC anisotropy is introduced in the inversion, whereas the EW 

hemispheric isotropic structures are retained using equatorial data in the inversion. These 

inferences suggest that df times sampling along the polar paths are truly more complex, and detect 

regional variations more readily than those along equatorial paths. This also indicates that the 

isotropic hemispheres would not necessarily correspond to the anisotropic hemispheres, leading to 

the discrepancies in the HB defined using equatorial and polar dt(PKiKP–PKPdf). As discussed, 

the uncertainties of the HB in the northern and southern hemispheres are examined separately using 

both equatorial and polar dt(PKiKP–PKPdf). Such a discrepancy would yield only 0–10° variations 

in the position of the HB in the northern and southern hemispheres (Figs. 7 and 8). 

 

6.5 Possible implications 

The isotropic part of the uppermost IC has been well established in previous studies. The 

isotropic layer is thinner and exhibits regional variations elsewhere beneath the WH (Deuss, 2014; 

Tkalčić, 2015). Our inferred 1.75% anisotropy beneath the Pacific, across 180–150°W, in the 

uppermost IC is new, and has several implications. First, the splitting functions of normal-mode 

observations are most sensitive to UIC structure and thus indicate anisotropy there, in contrast to 

the isotropic UIC previously inferred from body-wave observations (Deuss, 2014). Since this study 

suggests anisotropy beneath the Pacific across 180–150°W in the UIC, our findings are the first that 

could reconcile normal-mode and body-wave UIC observations. In addition, solidification texturing 

of the IC due to heat extraction caused by cylindrical OC convection would imply anisotropy of the 

UIC (Bergman, 1997; Deguen, 2012), and our observations are partly compatible with a model for 

IC growth by solidification texturing. However, regional variations in polar dt(PKiKP–PKPdf) near 

180°W could also imply an isotropic UIC and a laterally varying anisotropic LIC. It remains to be 
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confirmed how anisotropy in the uppermost IC evolves as a function of depth and anisotropy 

elsewhere in the uppermost IC in the WH. This will be the subject of forthcoming studies. 

 

Several dynamic models have been proposed to account for hemispheric structures in the 

UIC. One model imposes longstanding thermo-chemical structures in the lower mantle that couple 

OC convection and influence regional IC growth rate (Aubert et al., 2008). Though it is not 

explicitly stated in that study, it would be expected that such thermo-chemical structures in the 

lower mantle would generate a broad, smooth east–west transition in the IC. Alternately, if 

invoking mechanisms from the IC internally, several proposed dynamic models are able to 

reproduce hemispheric differences in the IC (Alboussière et al., 2010; Monnereau et al., 2010; 

Deguen, 2012; Aubert et al., 2013). If the temperature profile of the IC is superadiabatic, an 

unstable eastward translational convection would occur, resulting in melting in the EH and 

solidification in the WH. A proposed model of a convectively translating IC produced a smooth 

transition between the two hemispheres, but a subsequent study revealed that this translation could 

produce a fairly sharp HB (Geballe et al., 2013). However, this model would require rather 

sophisticated solidification processes, in addition to convective translation, to account for the 

presence of isotropy and anisotropy, and latitudinally dependent hemispheric boundary in the 

uppermost IC.  

 

7. Conclusions 

This study determined the western side of the east–west hemispheric boundary near 180°W 

in the inner core, using differential time residuals of PKiKP–PKPdf and PKP(bc–df) whose PKPdf 

sample the region 155°E–130°W. The western hemisphere of the inner core is well known for its 

thin isotropic layer overlying strong anisotropy at depth, low isotropic velocity, and low attenuation, 

in contrast to the eastern hemisphere. The hemispheric boundary could thus be determined by 

searching for the meridian at which the transition of the contrast in anisotropy or isotropic velocity 
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is clearest. Differential time residuals of PKiKP–PKPdf, computed relative to the AK135 model, 

reveal that the hemispheric boundary could be placed at 175°E–180°W in the southern hemisphere 

to distinguish the nearly isotropic (0.25%) eastern hemisphere from the moderately anisotropic 

(1.75%) western hemisphere; the hemispheric boundary is placed at 170–160°W in the northern 

hemisphere to separate the faster eastern hemisphere from the slower western hemisphere. These 

interpretations imply either a 10°–20° sharp gradient in the degree of anisotropy or a 10°–20° kink 

and latitudinally-dependent hemispheric boundary in the uppermost inner core. The isotropic 

velocity contrast is 0.56% between the eastern and western hemispheres near the western 

hemisphere boundary (160°W) in the uppermost 80 km of the inner core, lower than previous 

estimates using PKiKP–PKPdf sampling the bulk part of each hemisphere. Differential time 

residuals of PKP(bc–df) are more scattered, exhibiting two westward-decreasing gradients, with 

0.002 s/° observed across 155°E–160°W of the eastern hemisphere and a steeper gradient of 0.012 

s/° observed across 160°W–130°W of the western hemisphere. The hemispheric boundary could 

remain at 160°W in the deeper part of the inner core, but this estimate is less definitive. We assess 

the uncertainty and precision of the laterally shifting hemispheric boundary on differential time 

residuals of PKiKP–PKPdf and PKP(bc–df) relative to the composite models for the eastern and 

western hemispheres of the inner core. Consistent values of the inferred hemispheric boundary and 

its latitudinal dependence are observed by taking into account the effect of PKPdf propagating 

through the east–west inter-hemispheres of the inner core. We also examine the depth-dependence 

of the hemispheric boundary and fine structures near the western hemisphere boundary in the upper 

300 km of the inner core, but this pattern is obscure. The impact of heterogeneous mantle structures 

on PKP differential times is examined using the GyPSuM model, which have null influence on 

differential times of PKiKP–PKPdf, but localized structures in the lowermost mantle may have 

potential impacts on the PKP(bc–df) differential times and could be responsible for the scattered 

PKP(bc–df) observations. Our inferred latitudinally dependent hemispheric boundary can partly 

reconcile previous interpretations of anisotropy detected beneath the eastern hemisphere at depth. 
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Lateral variations in the transition from isotropy to anisotropy and the latitudinally dependent 

hemispheric boundary near 180°W suggest sophisticated dynamics operating in the inner core, 

leading to inner core regional growth/melting with complex textures as a result. 
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Figure captions 

 

Figure 1. (a) Paths of PKiKP (gray) and PKPdf (black) at 135°, and PKPbc (gray) and PKPdf at 

151°. (b) Map view of differential time residuals of PKiKP–PKPdf. PKPdf rays in the inner core 

(IC) along equatorial (ξ ≥ 40°) and polar (ξ < 40°) paths are indicated by gray dotted and black 

solid lines, respectively. Locations of df turning points in the IC for equatorial and polar paths are 

indicated by small circles and large triangles, respectively. dt(PKiKP–PKPdf) values are plotted at 

df turning locations, with magnitudes indicated by color bars. The western hemispheric boundary 

(WHB) is indicated by a yellow solid and black dotted line. Derivations of the WHB’s position are 

discussed in the text. (c) Map view of PKP(bc–df) for df sampling the deeper part of the IC, shown 

on a Lambert azimuthal equal-area projection centered at 50°N, 170°W. 

 

 

Figure 2. (a) Differential time residuals of PKiKP–PKPdf relative to AK135, denoted dt(PKiKP–

PKPdf), as a function of PKPdf turning longitude (φ). (b) Differential time residuals of PKP(bc–df) 

relative to AK135, denoted dt(bc–df), as a function of φ. The eastern hemisphere (EH) and western 

hemisphere (WH) of the IC sampled by df are defined by the WHB. Means of dt in 5° longitudinal 

bins are indicated by diamonds. Symbols of dt for the EH and WH along equatorial (equ) and polar 

(pol) raypaths are displayed in the legend. In (b), dt(bc–df) are further corrected for the time shift 

due to heterogeneous mantle structures predicted by the GyPSuM P-wave tomographic model. The 

green dotted line indicates the derived lateral gradients of 0.002 s/° decreasing westward from 

155°E to 160°W in the EH and of 0.012 s/° decreasing westward from 160°W to 130°W in the WH.  
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Figure 3. PKiKP–PKPdf waveforms selected at similar distances to display longitudinally 

dependent anisotropy in the region 180–155°W. Waveforms are band-pass filtered from 0.5 to 2.0 

Hz, and aligned with the maximum amplitude of the PKiKP phase (t = 0). The maximum amplitude 

of the picked df and the AK135 model’s predicted df arrival are indicated by black and gray 

vertical lines, respectively. The text identifier below and to the left of each waveform follows the 

format trace number, event date–station code, epicentral distance (∆), source depth (km), df turning 

longitude (φ), df angle relative to the Earth’s rotation axis (ξ), and traveltime residual (dt, s). Traces 

1–3 refer to φ near 180°W, traces 4–7 to φ in the range 175–170°W, and traces 8–10 to φ of 168–

144°W. 

 

 

Figure 4. Differential time residuals dt(PKiKP–PKPdf), computed relative to AK135, as a function 

of ξ (PKPdf angle relative to the Earth’s rotation axis, ERA) for df sampling of the (a) western and 

(b) eastern hemispheres of the uppermost 80 km of the IC. Polar and equatorial paths are defined 

by ξ < 40° and ξ ≥ 40°, respectively. Symbols of dt are identical to those displayed in Fig. 2. 

Anisotropy is fitted using Equation (1). (a) Beneath the WH, in the longitude range spanning 180–

155°W, a moderate anisotropy of 1.75% is determined by α, ε, and γ with best-fit values of −0.13, 

1.75, and −0.95, respectively (black line). (b) Beneath the EH, in the range spanning 160°E–180°W, 

a nearly isotropic velocity (anisotropy of 0.25%) is determined by α, ε, and γ with best-fit values of 

−0.04, 0.25, and −0.08, respectively (gray line). 
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Figure 5. Differential time residuals dt(PKiKP–PKPdf) computed relative to the mE2 and mW2 

composite models of the IC, plotted as a function of φ, for PKPdf sampling along equatorial paths, 

to assess the uncertainties in dt(PKiKP–PKPdf) due to laterally shifting the position of the WHB. 

For a fixed WHB, the length and time of the df ray confined in the EH and WH of the IC can be 

estimated. The entire df time in the IC consists of the portion confined in the EH (predicted by the 

mE2 model, Fig. S2) and WH (predicted by mW2). This allows us to consider the effect of df time 

traversing the east–west (EW) inter-hemispheres of the IC, and thus estimate quantitative 

uncertainties in dt due to a lateral shift in the position of the WHB, which yields a more reliable 

estimate of the true position of the WHB. The laterally shifted positions of the WHB are tested at 

(a) 170°E, (b) 180°W, (c) 170°W, (d) 160°W, (e) 150°W, and (f) 140°W. Means of dt in 5° 

longitudinal bins are indicated by diamonds. The symbols for dt are identical to those displayed in 

Fig. 2. (g) Means and (h) root-mean-square (RMS) residuals of dt as a result of the WHB shifting 

from 170°E–140°W, computed in 10° longitudinal bins. The values of the means (g) and RMS 

residuals (h) are displayed side-by-side and distinguished by color (color legend in (h)) for 

comparison. The optimal position of the WHB is at 170–160°W (light blue and red bars), providing 

minimum values across longitudinal bins 170°E–160°W (highlighted by the arrows in (g) and (h)). 
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Figure 6. Differential time residuals dt(PKiKP–PKPdf) plotted as a function of φ, for PKPdf 

phases sampling along polar paths, similar to Fig. 5 for equatorial paths. The laterally shifted 

positions of the WHB are tested at (a) 170°E, (b) 180°W, (c) 170°W, (d) 160°W, (e) 150°W, and 

(f) 140°W. Means of dt in 5° longitudinal bins are indicated by diamonds. The symbols for dt are 

identical to those displayed in Fig. 2. (g) Means and (h) RMS residuals of dt as a result of the WHB 

shifting from 170°E–140°W, computed in 10° longitudinal bins. The values of the means (g) and 

RMS residuals (h) are displayed side-by-side and distinguished by color (color legend in (h)) for 

comparison. An increase in means (g) and RMS residuals (h) of dt(PKiKP–PKPdf) occurred across 

180°W, placing the WHB at 180°W. 

 

 

Figure 7. Analysis of the latitude dependence on the WHB, derived from dt(PKiKP–PKPdf) for 

PKPdf phases sampling along equatorial paths. The df ray turning latitudes for the northern (a, b) 

and southern (c, d) hemispheres of the IC are analyzed separately, with a north–south division 

placed at 8°N. In the northern hemisphere (8–90°N), the placement of the WHB at 170–160°W 

(light blue and red bars in (a) and (b)) often yielded minimal means and RMS residuals of dt over 

longitudinal bins 180–160°W (highlighted by the arrows in (a) and (b)). In the southern hemisphere 

(90°S–8°N), the placement of the WHB at 180–170°W (gray and light blue bars in (c) and (d)) 

often yielded minimal means but similar RMS residuals over longitudinal bins 180–160°W 

(highlighted by the arrows in (c) and (d)). 
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Figure 8. Analysis of the latitude dependence on the WHB, derived from dt(PKiKP–PKPdf) for 

PKPdf phases sampling along polar paths, similar to Fig. 7 for equatorial paths. In the northern 

hemisphere (8–90°N), the placement of the WHB at 170°W yielded comparable minima in the 

means and RMS residuals of dt over longitudinal bins 160°E–180°W of the EH and over 

longitudinal bins 170–160°W of the WH (arrows in (a) and (b)). In the southern hemisphere (90°S–

8°N), the placement of the WHB at 180°W can optimally distinguish the means and RMS residuals 

of dt over 160°E–180°W of the EH and 180–160°W of the WH (arrows in (c) and (d)). 

 

 

Figure 9. Inferred latitudinal dependence of the WHB and isotropic velocity/anisotropy contrast 

across the WHB. Each image is shown on a Lambert azimuthal equal-area projection centered at 

50°N, 170°W. The yellow solid line with black dots indicates the inferred position of the WHB. 

The percentages refer to the difference between our modeled velocity structure and that of the 

AK135 model, with blue and red values indicating higher and lower modeled velocities, 

respectively. (a) Isotropic structures in the uppermost 80 km of the IC. The estimated isotropic 

velocity contrast near the WHB is lower than previous estimates for the bulk part of the EH and 

WH. (b) Anisotropic structures in the uppermost 80 km of the IC. In the northern hemisphere, the 

WHB is placed at 170°W, compared with 160°W in (a). (c) Isotropic structures in the upper 300 km 

of the IC. The isotropic velocity contrast estimated near the WHB is lower than previous estimates 

for the bulk part of the EH and WH at depth. 
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Table 1. Summary of the means and 1σ uncertainties of dt(PKiKP–PKPdf) for PKPdf sampling the 

eastern and western hemispheres and along equatorial and polar raypaths of the IC 

 

Region (PKPdf ray direction) Means ± 1σ
uncertainties 

160°E−170°W, eastern hemisphere (equatorial) +0.05 s ± 0.05 s 

160°E−175°E, eastern hemisphere (polar) +0.2 s ± 0.08 s 

170−130°W, western hemisphere (equatorial) −0.2 s ± 0.12 s 

175°E−155°W, western hemisphere (polar) +0.89 s ± 0.21 s 

  

 

Table 2. Summary of the inferred WHB position, using different PKP differential time data (bold 

cases indicate the WHB position determined by the primary dataset).  

 

Region WHB position determined from 

equatorial data 

WHB position determined from 

polar data 

Northern hemisphere  

(8–90°N) 

170–160°W (using PKiKP–

PKPdf)  

170°W (using PKiKP–PKPdf) 

Southern hemisphere  

(90°S–8°N) 

180–170°W (using PKiKP–PKPdf) 180°W (using PKiKP–

PKPdf) 

Northern hemisphere 

(8–90°N) 

170–160°W (using PKP(bc–df))  
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Highlights 

• PKiKP–PKPdf and PKP(bc–df) are used to probe the Inner Core (IC) EW transition 

• The western hemispheric boundary (WHB) of the IC is latitudinally dependent 

• The uppermost IC beneath the Pacific Ocean of the WH exhibits 1.75% anisotropy 

• The lower isotropic velocity contrast is observed near the WHB of the IC 
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