3,083 research outputs found

    Analysis of IL2/IL21 Gene Variants in Cholestatic Liver Diseases Reveals an Association with Primary Sclerosing Cholangitis

    Get PDF
    Background/Aims: The chromosome 4q27 region harboring IL2 and IL21 is an established risk locus for ulcerative colitis (UC) and various other autoimmune diseases. Considering the strong coincidence of primary sclerosing cholangitis (PSC) with UC and the increased frequency of other autoimmune disorders in patients with primary biliary cirrhosis (PBC), we investigated whether genetic variation in the IL2/IL21 region may also modulate the susceptibility to these two rare cholestatic liver diseases. Methods: Four strongly UC-associated single nucleotide polymorphisms (SNPs) within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block were genotyped in 124 PBC and 41 PSC patients. Control allele frequencies from 1,487 healthy, unrelated Caucasians were available from a previous UC association study. Results: The minor alleles of all four markers were associated with a decreased susceptibility to PSC (rs13151961: p = 0.013, odds ratio (OR) 0.34; rs13119723: p = 0.023, OR 0.40; rs6822844: p = 0.031, OR 0.41; rs6840978: p = 0.043, OR 0.46). Moreover, a haplotype consisting of the four minor alleles also had a protective effect on PSC susceptibility (p = 0.0084, OR 0.28). A haplotype of the four major alleles was independently associated with PSC when excluding the patients with concomitant inflammatory bowel disease (p = 0.033, OR 4.18). Conclusion: The IL2/IL21 region may be one of the highly suggestive but so far rarely identified shared susceptibility loci for PSC and UC. Copyright (C) 2011 S. Karger AG, Base

    Non-syndromic Hearing Impairment in a Hungarian Family with the m.7510T>C Mutation of Mitochondrial tRNA^^Ser(UCN)^^^ and Review of Published Cases

    Get PDF
    The m.7510T>C mitochondrial DNA (mtDNA) mutation is a tRNA(Ser(UCN)) alteration leading to matrilineal isolated hearing impairment. The current paper reviews the available reports on the m.7510T>C mtDNA mutation, with special attention to phenotypic variations and haplogroup background. A Hungarian family, the fourth family reported in the literature, is presented, in which analysis of three generations with bilateral isolated hearing loss revealed the m.7510T>C tRNA(Ser(UCN)) mutation in homoplasmic form in the affected members. Haplogroup analysis verified an unnamed subgroup of mitochondrial haplogroup H. Previously reported Spanish and North American Caucasian families belong to different subgroups of haplogroup H. Analyzing our biobank of Hungarian patients with sensorineural hearing loss, we did not detect this mutation in any other patient, nor was it found in Caucasian haplogroup H control samples. Comparing the cases reported so far, there is interfamilial variablity in the age of onset, accompanying symptoms, and haplogroup background. Our case adds further genetic evidence for the pathogenicity of the m.7510T>C mutation and underlines the need to include full mtDNA sequencing in the screening for unexplained hearing loss

    Early star-forming galaxies and the reionization of the Universe

    Full text link
    Star forming galaxies represent a valuable tracer of cosmic history. Recent observational progress with Hubble Space Telescope has led to the discovery and study of the earliest-known galaxies corresponding to a period when the Universe was only ~800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen. New techniques are being developed to understand the properties of these most distant galaxies and determine their influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted version of the review formatted by the authors, in accordance with Nature publication policies. For the official, published version of the review, please see http://www.nature.com/nature/archive/index.htm

    High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Get PDF
    BACKGROUND: Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. METHODS: To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. RESULTS: The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45). The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330). Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. CONCLUSION: These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in intron 2 of human SLC26A5 suggests a potential mechanism by which expression of prestin might be maintained in cells carrying the SLC26A5 IVS2-2A>G DNA sequence variation. Additional studies are needed to evaluate the effect of the IVS2-2A>G transition on splicing of SLC26A5 transcripts and characterize the hearing status of individuals homozygous for the IVS2-2A>G variant

    Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain

    Get PDF
    Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain

    Temporary use of shape memory spinal rod in the treatment of scoliosis

    Get PDF
    NiTinol shape memory alloy is characterized by its malleability at low temperatures and its ability to return to a preconfigured shape above its activation temperature. This process can be utilized to assist in scoliosis correction. The goal of this retrospective study was to evaluate the clinical and radiographic results of intraoperative use of shape memory alloy rod in the correction of scoliosis. From May 2002 to September 2006, 38 scoliosis patients (ranging from 50° to 120°; 22 cases over 70°) who underwent shape memory alloy-assisted correction in our institute were reviewed. During the operation, a shape memory alloy rod served as a temporary correction tool. Following correction, the rod was replaced by a rigid rod. The mean blood loss at surgery was 680 ± 584 ml; the mean operative time was 278 ± 62 min. The major Cobb angle improved from an average 78.4° preoperatively to 24.3° postoperatively (total percent correction 71.4%). In 16 patients with a major curve <70° and flexibility of 52.7%, the deformity improved from 58.4° preoperatively to 12.3° postoperatively (percent correction, 78.9%). In 22 patients with a major curve >70° and flexibility of 25.6%, the deformity improved from 94.1° preoperatively to 30.1° postoperatively (percent correction, 68.1%). Only one case had a deep infection. There were no neurologic, vascular or correction-related complications such as screw pullout or metal fracture. The study shows that the intraoperative use of a shape memory rod is a safe and effective method to correct scoliosis

    Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-alpha co-expression, but little interleukin-22 and interleukin-23R expression

    Get PDF
    Introduction\ud Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity. \ud \ud Methods\ud Flow cytometry was used to analyse the phenotype and cytokine production of mononuclear cells isolated from peripheral blood (PBMC) (n = 44), synovial fluid (SFMC) (n = 14) and synovium (SVMC) (n = 10) of RA patients and PBMC of healthy controls (n = 13). \ud \ud Results\ud The frequency of IL-17-producing CD4 T cells was elevated in RA SFMC compared with RA PBMC (P = 0.04). However, the frequency of this population in RA SVMC was comparable to that in paired RA PBMC. The percentage of IL-17-producing CD4 T cells coexpressing tumor necrosis factor alpha (TNFα) was significantly increased in SFMC (P = 0.0068). The frequency of IFNγ-producing CD4 T cells was also significantly higher in SFMC than paired PBMC (P = 0.042). The majority of IL-17-producing CD4 T cells coexpressed IFNγ. IL-17-producing CD4 T cells in RA PBMC and SFMC exhibited very little IL-22 or IL-23R coexpression. \ud \ud Conclusions\ud These findings demonstrate a modest enrichment of IL-17-producing CD4 T cells in RA SFMC compared to PBMC. Th17 cells in SFMC produce more TNFα than their PBMC counterparts, but are not a significant source of IL-22 and do not express IL-23R. However, the percentage of CD4 T cells which produce IL-17 in the rheumatoid joint is low, suggesting that other cells may be alternative sources of IL-17 within the joints of RA patients. \ud \u
    corecore