14 research outputs found

    Mutability and Importance of a Hypermutable Cell Subpopulation that Produces Stress-Induced Mutants in Escherichia coli

    Get PDF
    In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac+ mutants, with and without evidence of descent from the HMS, have similar Lac+ mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac+ mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones

    A proposal for calculating the no-observed-adverse-effect level (NOAEL) for organic compounds responsible for liver toxicity based on their physicochemical properties

    Full text link
    Objectives: Both environmental and occupational exposure limits are based on the no-observed-adverse-effect level (NOAEL), lowest-observed-adverse-effect level (LOAEL) or benchmark dose (BMD) deriving from epidemiological and experimental studies. The aim of this study is to investigate to what extent the NOAEL values for organic compounds responsible for liver toxicity calculated based on their physicochemical properties could be used for calculating occupational exposure limits. Material and Methods: The distribution coefficients from air to the liver (log Kliver) were calculated according to the Abraham solvation equation. NOAEL and LOAEL values for early effects in the liver were obtained from the literature data. The descriptors for Abraham's equation were found for 59 compounds, which were divided into 2 groups: "non-reactive" (alcohols, ketones, esters, ethers, aromatic and aliphatic hydrocarbons, amides) and "possibly reactive" (aldehydes, allyl compounds, amines, benzyl halides, halogenated hydrocarbons, acrylates). Results: The correlation coefficients between log-log K and log NOAEL for non-reactive and reactive compounds amounted to r = -0.8123 and r = -0.8045, respectively, and were statistically significant. It appears that the Abraham equation could be used to predict the NOAEL values for compounds lacking information concerning their liver toxicity. Conclusions: In view of the tendency to limit animal testing procedures, the method proposed in this paper can improve the practice of setting exposure guidelines for the unstudied compounds
    corecore