47 research outputs found

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Septoria-like pathogens causing leaf and fruit spot of pistachio

    Get PDF
    Several species of Septoria are associated with leaf and fruit spot of pistachio (Pistacia vera), though their identity has always been confused, making identification problematic. The present study elucidates the taxonomy of the Septoria spp. associated with pistachio, and distinguishes four species associated with this host genus. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1a, RPB2 and Btub were generated for a subset of isolates. Cylindroseptoria pistaciae, which is associated with leaf spots of Pistacia lentiscus in Spain, is characterised by pycnidial conidiomata that give rise to cylindrical, aseptate conidia. Two species of Septoria s. str. are also recognised on pistachio, S. pistaciarum, and S. pistaciae. The latter is part of the S. protearum species complex, and appears to be a wide host range pathogen occurring on hosts in several different plant families. Septoria pistacina, a major pathogen of pistachio in Turkey, is shown to belong to Pseudocercospora, and not Septoria as earlier suspected. Other than for its pycnidial conidiomata, it is a typical species of Pseudocercospora based on its smooth, pigmented conidiogenous cells and septate conidia. This phenomenon has also been observed in Pallidocercospora, and seriously questions the value of conidiomatal structure at generic level, which has traditionally been used to separate hyphomycetous from coelomycetous ascomycetes. Other than DNA barcodes to facilitate the molecular identification of these taxa occurring on pistachio, a key is also provided to distinguish species based on morphology

    Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications

    Get PDF
    The morphologically diverse genus Ceuthospora has traditionally been linked to Phacidium sexual morphs via association, though molecular or cultural data to confirm this relationship have been lacking. The aim of this study was thus to resolve the relationship of these two genera by generating nucleotide sequence data for three loci, ITS, LSU and RPB2. Based on these results, Ceuthospora is reduced to synonymy under the older generic name Phacidium. Phacidiaceae (currently Helotiales) is suggested to constitute a separate order, Phacidiales (Leotiomycetes), as sister to Helotiales, which is clearly paraphyletic. Phacidiaceae includes Bulgaria, and consequently the family Bulgariaceae becomes a synonym of Phacidiaceae. Several new combinations are introduced in Phacidium, along with two new species, P. pseudophacidioides, which occurs on Ilex and Chamaespartium in Europe, and Phacidium trichophori, which occurs on Trichophorum cespitosum subsp. germanicum in The Netherlands. The generic name Allantophomopsiella is introduced to accommodate A. pseudotsugae, a pathogen of conifers, while Gremmenia is resurrected to accommodate the snow-blight pathogens of conifers, G. abietis, G. infestans, and G. pini-cembrae

    The genera of Fungi: fixing the application of type species of generic names

    No full text
    To ensure a stable platform for fungal taxonomy, it is of paramount importance that the genetic application of generic names be based on their DNA sequence data, and wherever possible, not morphology or ecology alone. To facilitate this process, a new database, accessible at www.GeneraofFungi.org (GoF) was established, which will allow deposition of metadata linked to holo-, lecto-, neo- or epitype specimens, cultures and DNA sequence data of the type species of genera. Although there are presently more than 18 000 fungal genera described, we aim to initially focus on the subset of names that have been placed on the “Without-prejudice List of Protected Generic Names of Fungi” (see IMA Fungus 4 (2): 381–443, 2013). To enable the global mycological community to keep track of typification events and avoid duplication, special MycoBank Typification identfiers (MBT) will be issued upon deposit of metadata in MycoBank. MycoBank is linked to GoF, thus deposited metadata of generic type species will be displayed in GoF (and vice versa), but will also be linked to Index Fungorum (IF) and the curated RefSeq Targeted Loci (RTL) database in GenBank at the National Center for Biotechnology Information (NCBI). This initial paper focuses on eight genera of appendaged coelomycetes, the type species of which are neo- or epitypified here: Bartalinia (Bartalinia robillardoides; Amphisphaeriaceae, Xylariales), Chaetospermum (Chaetospermum chaetosporum, incertae sedis, Sebacinales), Coniella (Coniella fragariae, Schizoparmaceae, Diaporthales), Crinitospora (Crinitospora pulchra, Melanconidaceae, Diaporthales), Eleutheromyces (Eleutheromyces subulatus, Helotiales), Kellermania (Kellermania yuccigena, Planistromataceae, Botryosphaeriales), Mastigosporium (Mastigosporium album, Helotiales), and Mycotribulus (Mycotribulus mirabilis, Agaricales). Authors interested in contributing accounts of individual genera to larger multi-authored papers to be published in IMA Fungus, should contact the associate editors listed below for the major groups of fungi on the List of Protected Generic Names for Fungi
    corecore