28 research outputs found

    Calcitriol modulates the CD46 pathway in T cells

    Get PDF
    The complement regulator CD46 is a costimulatory molecule for human T cells that induces a regulatory Tr1 phenotype, characterized by large amounts of IL-10 secretion. Secretion of IL-10 upon CD46 costimulation is largely impaired in T cells from patients with multiple sclerosis (MS). Vitamin D can exert a direct effect on T cells, and may be beneficial in several pathologies, including MS. In this pilot study, we examined whether active vitamin D (1,25(OH)2D3 or calcitriol) could modulate the CD46 pathway and restore IL-10 production by CD46-costimulated CD4+ T cells from patients with MS. In healthy T cells, calcitriol profoundly affects the phenotype of CD46-costimulated CD4+ T cells, by increasing the expression of CD28, CD25, CTLA-4 and Foxp3 while it concomitantly decreased CD46 expression. Similar trends were observed in MS CD4+ T cells except for CD25 for which a striking opposite effect was observed: while CD25 was normally induced on MS T cells by CD46 costimulation, addition of calcitriol consistently inhibited its induction. Despite the aberrant effect on CD25 expression, calcitriol increased the IL-10:IFNc ratio, characteristic of the CD46-induced Tr1 phenotype, in both T cells from healthy donors and patients with MS. Hence, we show that calcitriol affects the CD46 pathway, and that it promotes anti-inflammatory responses mediated by CD46. Moreover, it might be beneficial for T cell responses in MS

    Regulation of Mycobacterium-Specific Mononuclear Cell Responses by 25-Hydroxyvitamin D3

    Get PDF
    The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has been shown to be an important regulator of innate and adaptive immune function. In addition, synthesis of 1,25(OH)2D3 from 25-hydroxyvitamin D3 (25(OH)D3) by the enzyme 1α-hydroxylase in monocytes upon activation by TLR signaling has been found to regulate innate immune responses of monocytes in an intracrine fashion. In this study we wanted to determine what cells expressed 1α-hydroxylase in stimulated peripheral blood mononuclear cell (PBMC) cultures and if conversion of 25(OH)D3 to 1,25(OH)2D3 in PBMC cultures regulated antigen-specific immune responses. Initially, we found that stimulation of PBMCs from animals vaccinated with Mycobacterium bovis (M. bovis) BCG with purified protein derivative of M. bovis (M. bovis PPD) induced 1α-hydroxylase gene expression and that treatment with a physiological concentration of 25(OH)D3 down-regulated IFN-γ and IL-17F gene expression. Next, we stimulated PBMCs from M. bovis BCG-vaccinated and non-vaccinated cattle with M. bovis PPD and sorted them by FACS according to surface markers for monocytes/macrophages (CD14), B cells (IgM), and T cells (CD3). Sorting the PBMCs revealed that 1α-hydroxylase expression was induced in the monocytes and B cells, but not in the T cells. Furthermore, treatment of stimulated PBMCs with 25(OH)D3 down-regulated antigen-specific IFN-γ and IL-17F responses in the T cells, even though 1α-hydroxylase expression was not induced in the T cells. Based on evidence of no T cell 1α-hydroxylase we hypothesize that activated monocytes and B cells synthesize 1,25(OH)2D3 and that 1,25(OH)2D3 down-regulates antigen-specific expression of IFN-γ and IL-17F in T cells in a paracrine fashion

    1,25-Dihydroxyvitamin D(3) inhibits lipopolysaccharide-induced immune activation in human endothelial cells

    No full text
    In addition to its well-known role in mineral and skeletal homeostasis, 1,25-dihydroxyvitamin D(3)[1,25-(OH)(2), D(3)] regulates the differentiation, growth and function of a broad range of immune system cells, including monocytes, dendritic cells, T and B lymphocytes. Vascular endothelial cells play a major role in the innate immune activation during infections, sepsis and transplant rejection; however, currently there are no data on the effect of 1,25-(OH)(2) D(3) on microbial antigen-induced endothelial cell activation. Here we show that 1,25-(OH)(2) D(3) pretreatment of human microvessel endothelial cells (HMEC) inhibited the enteric Gram-negative bacterial lipopolysaccharide (LPS) activation of transcription factor NF-κB and interleukin (IL)-6, IL-8 and regulated upon activation normal T cell exposed and secreted (RANTES) release. The effect of 1,25-(OH)(2) D(3) was not due to increased cell death or inhibition of endothelial cell proliferation. 1,25-(OH)(2) D(3) pretreatment of HMEC did not block MyD88-independent LPS-induced interferon (IFN)-β promoter activation. 1,25-(OH)(2) D(3) pretreatment of HMEC did not modulate Toll-like receptor 4 (TLR4) or MD-2 expression. These data suggest that 1,25-(OH)(2) D(3) may play a role in LPS-induced immune activation of endothelial cells during Gram-negative bacterial infections, and a suggest a potential role for 1,25-(OH)(2) D(3) and its analogues as an adjuvant in the treatment of Gram-negative sepsis
    corecore