47 research outputs found

    Naturally presented HLA class I-restricted epitopes from the neurotrophic factor S100-? are targets of the autoimmune response in type 1 diabetes

    Get PDF
    Type 1 diabetes (T1D) results from the destruction of pancreatic beta-cells by the immune system, and CD8(+) T lymphocytes are critical actors in this autoimmune response. Pancreatic islets are surrounded by a mesh of nervous cells, the peri-insular Schwann cells, which are also targeted by autoreactive T lymphocytes and express specific antigens, such as the neurotrophic factor S100-beta. Previous work has shown increased proliferative responses to whole S100-beta in both human T1D patients and the nonobese diabetic (NOD) mouse model. We describe for the first time naturally processed and presented epitopes (NPPEs) presented by class I human leukocyte antigen-A*02:01 (A2.1) molecules derived from S100-beta. These NPPEs triggered IFN-gamma responses more frequently in both newly diagnosed and long-term T1D patients compared with healthy donors. Furthermore, the same NPPEs are recognized during the autoimmune response leading to diabetes in A2.1-transgenic NOD mice as early as 4 wk of age. Interestingly, when these NPPEs are used to prevent diabetes in this animal model, an acceleration of the disease is observed together with an exacerbation in insulitis and an increase in S100-beta-specific cytotoxicity in vaccinated animals. Whether these can be used in diabetes prevention needs to be carefully evaluated in animal models before use in future clinical assays.-Calvino-Sampedro, C., Gomez-Tourino, I., Cordero, O. J., Reche, P. A., Gomez-Perosanz, M., Sanchez-Trincado, J. L., Rodriguez, M. A., Sueiro, A. M., Vinuela, J. E., Calvino, R. V. Naturally presented HLA class I-restricted epitopes from the neurotrophic factor S100-beta are targets of the autoimmune response in type 1 diabetes

    Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation

    Get PDF
    FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/-) mice.FAAH(-/-) mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry). FAAH(-/-) mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN). Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/-) mice. Dysregulated hepatic FAAH(-/-) lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/-) acetyl-CoA (85%, p<0.01) corresponded to similar increases in citrate levels (45%). Altered FAAH(-/-) mitochondrial malate dehydrogenase (MDH2) acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/-) mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/-) aldolase B. Fed FAAH(-/-) alcohol dehydrogenase (ADH) acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/-) mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver's role in fostering the pre-diabetic state, and may reflect part of the mechanism underlying the hepatic effects of endocannabinoids in alcoholic liver disease mouse models

    Topic 6: Grid and Cluster Computing

    No full text
    corecore