43 research outputs found

    PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion

    Get PDF
    Biomaterials surface design is critical for the control of materials and biological system interactions.Being regulated by a layer of molecular dimensions, bioadhesion could be effectively tailored by polymersurface grafting. Basically, this surface modification can be controlled by radical polymerization, whichis a useful tool for this purpose. The aim of this review is to provide a comprehensive overview of therole of surface characteristics on bioadhesion properties. We place a particular focus on biomaterialsfunctionalized with a brush surface, on presentation of grafting techniques for “grafting to” and “graft-ing from” strategies and on brush characterization methods. Since atom transfer radical polymerization(ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization are the most fre-quently used grafting techniques, their main characteristics will be explained. Through the example ofpoly(N-isopropylacrylamide) (PNIPAM) which is a widely used polymer allowing tuneable cell adhesion,smart surfaces involving PNIPAM will be presented with their main modern applications

    A method for purification, identification and validation of DNMT1 mRNA binding proteins

    Get PDF
    DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division. DNMT1 expression is tightly regulated within the cell cycle. Our previous study showed that the binding of a protein with an apparent size of ~40 kDa on DNMT1 3’-UTR triggered the destabilization of DNMT1 mRNA transcript during Go/G1 phase. Using RNA affinity capture with the 3’-UTR of DNMT1 mRNA and matrix-assisted laser desorption-time of flight tandem mass spectrometry (MALDI-TOF-MS-MS) analysis, we isolated and identified AUF 1 (AU-rich element ARE:poly-(U)-binding/degradation factor) as the binding protein. We then validated the role of this protein in the destabilization of DNMT1 mRNA. In this report, we detail the different approaches used for the isolation, the identification of a RNA binding protein and the validation of its role

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Alterations of tumor suppressor gene p16(INK4a )in pancreatic ductal carcinoma

    Get PDF
    BACKGROUND: Cell cycle inhibitor and tumor suppressor gene p16 / MTS-1 has been reported to be altered in a variety of human tumors. The purpose of the study was to evaluate primary pancreatic ductal adenocarcinomas for potentially inactivating p16 alterations. METHODS: We investigated the status of p16 gene by polymerase chain reaction (PCR), nonradioisotopic single strand conformation polymorphism (SSCP), DNA sequencing and hypermethylation analysis in 25 primary resected ductal adenocarcinomas. In addition, we investigated p16 protein expression in these cases by immunohistochemistry (IHC) using a monoclonal antibody clone (MS-887-PO). RESULTS: Out of the 25 samples analyzed and compared to normal pancreatic control tissues, the overall frequency of p16 alterations was 80% (20/25). Aberrant promoter methylation was the most common mechanism of gene inactivation present in 52% (13/25) cases, followed by coding sequence mutations in 16% (4/25) cases and presumably homozygous deletion in 12% (3/25) cases. These genetic alterations correlated well with p16 protein expression as complete loss of p16 protein was found in 18 of 25 tumors (72%). CONCLUSION: These findings confirm that loss of p16 function could be involved in pancreatic cancer and may explain at least in part the aggressive behaviour of this tumor type

    MicroRNA Let-7f Inhibits Tumor Invasion and Metastasis by Targeting MYH9 in Human Gastric Cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. METHODOLOGY/PRINCIPAL: Real-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3'UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis

    Identification of MicroRNA-21 as a Biomarker for Chemoresistance and Clinical Outcome Following Adjuvant Therapy in Resectable Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The high risk of recurrence following surgical resection provides the rationale for adjuvant therapy. However, only a subset of patients benefit from adjuvant therapy. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of novel candidate biomarkers, including microRNAs, can predict clinical outcome in PDAC patients treated with adjuvant therapy.Formalin-fixed paraffin embedded specimens from a cohort of 82 resected Korean PDAC cases were analyzed for protein expression by immunohistochemistry and for microRNA expression using quantitative Real-Time PCR. Cox proportional hazards model analysis in the subgroup of patients treated with adjuvant therapy (N = 52) showed that lower than median miR-21 expression was associated with a significantly lower hazard ratio (HR) for death (HR = 0.316; 95%CI = 0.166–0.600; P = 0.0004) and recurrence (HR = 0.521; 95%CI = 0.280–0.967; P = 0.04). MiR-21 expression status emerged as the single most predictive biomarker for treatment outcome among all 27 biological and 9 clinicopathological factors evaluated. No significant association was detected in patients not treated with adjuvant therapy. In an independent validation cohort of 45 frozen PDAC tissues from Italian cases, all treated with adjuvant therapy, lower than median miR-21 expression was confirmed to be correlated with longer overall as well as disease-free survival. Furthermore, transfection with anti-miR-21 enhanced the chemosensitivity of PDAC cells.. These data provide evidence that miR-21 may allow stratification for adjuvant therapy, and represents a new potential target for therapy in PDAC
    corecore