20 research outputs found

    A field-theoretic approach to the Wiener Sausage

    Get PDF
    The Wiener Sausage, the volume traced out by a sphere attached to a Brownian particle, is a classical problem in statistics and mathematical physics. Initially motivated by a range of field-theoretic, technical questions, we present a single loop renormalised perturbation theory of a stochastic process closely related to the Wiener Sausage, which, however, proves to be exact for the exponents and some amplitudes. The field-theoretic approach is particularly elegant and very enjoyable to see at work on such a classic problem. While we recover a number of known, classical results, the field-theoretic techniques deployed provide a particularly versatile framework, which allows easy calculation with different boundary conditions even of higher momenta and more complicated correlation functions. At the same time, we provide a highly instructive, non-trivial example for some of the technical particularities of the field-theoretic description of stochastic processes, such as excluded volume, lack of translational invariance and immobile particles. The aim of the present work is not to improve upon the well-established results for the Wiener Sausage, but to provide a field-theoretic approach to it, in order to gain a better understanding of the field-theoretic obstacles to overcome.Comment: 45 pages, 3 Figures, Springer styl

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    Optimal pooling designs with error detection

    Get PDF
    Consider a collection of objects, some of which may be `bad', and a test which determines whether or not a given sub-collection contains no bad objects. The non-adaptive pooling (or group testing) problem involves identifying the bad objects using the least number of tests applied in parallel. The `hypergeometric' case occurs when an upper bound on the number of bad objects is known {\em a priori}. Here, practical considerations lead us to impose the additional requirement of {\em a posteriori} confirmation that the bound is satisfied. A generalization of the problem in which occasional errors in the test outcomes can occur is also considered. Optimal solutions to the general problem are shown to be equivalent to maximum-size collections of subsets of a finite set satisfying a union condition which generalizes that considered by Erd\"os \etal \cite{erd}. Lower bounds on the number of tests required are derived when the number of bad objects is believed to be either 1 or 2. Steiner systems are shown to be optimal solutions in some cases

    EFFICIENT POOLING DESIGNS FOR LIBRARY SCREENING

    Get PDF
    We describe efficient methods for screening clone libraries, based on pooling schemes that we call "random k-sets designs." In these designs, the pools in which any clone occurs are equally likely to be any possible selection of k from the v pools. The values of k and v can be chosen to optimize desirable properties. Random k-sets designs have substantial advantages over alternative pooling schemes: they are efficient, flexible, and easy to specify, require fewer pools, and have error-correcting and error-detecting capabilities. In addition, screening can often be achieved in only one pass, thus facilitating automation. For design comparison, we assume a binomial distribution for the number of "positive" clones, with parameters n, the number of clones, and c, the coverage. We propose the expected number of resolved positive clones--clones that are definitely positive based upon the pool assays--as a criterion for the efficiency of a pooling design. We determine the value of k that is optimal, with respect to this criterion, as a function of v, n, and c. We also describe superior k-sets designs called k-sets packing designs. As an illustration, we discuss a robotically implemented design for a 2.5-fold-coverage, human chromosome 16 YAC library of n = 1298 clones. We also estimate the probability that each clone is positive, given the pool-assay data and a model for experimental errors
    corecore