5,815 research outputs found
Velocity weakening and possibility of aftershocks in nanofriction experiments
We study the frictional behavior of small contacts as those realized in the
atomic force microscope and other experimental setups, in the framework of
generalized Prandtl-Tomlinson models. Particular attention is paid to
mechanisms that generate velocity weakening, namely a decreasing average
friction force with the relative sliding velocity.The mechanisms studied model
the possibility of viscous relaxation, or aging effects in the contact. It is
found that, in addition to producing velocity weakening, these mechanisms can
also produce aftershocks at sufficiently low sliding velocities. This provides
a remarkable analogy at the microscale, of friction properties at the
macroscale, where aftershocks and velocity weakening are two fundamental
features of seismic phenomena.Comment: 8 pages, 7 figure
Computational Simulation and 3D Virtual Reality Engineering Tools for Dynamical Modeling and Imaging of Composite Nanomaterials
An adventure at engineering design and modeling is possible with a Virtual
Reality Environment (VRE) that uses multiple computer-generated media to let a
user experience situations that are temporally and spatially prohibiting. In
this paper, an approach to developing some advanced architecture and modeling
tools is presented to allow multiple frameworks work together while being
shielded from the application program. This architecture is being developed in
a framework of workbench interactive tools for next generation
nanoparticle-reinforced damping/dynamic systems. Through the use of system, an
engineer/programmer can respectively concentrate on tailoring an engineering
design concept of novel system and the application software design while using
existing databases/software outputs.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Design, fabrication, and delivery of a charge injection device as a stellar tracking device
Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device
Superlubricity - a new perspective on an established paradigm
Superlubricity is a frictionless tribological state sometimes occurring in
nanoscale material junctions. It is often associated with incommensurate
surface lattice structures appearing at the interface. Here, by using the
recently introduced registry index concept which quantifies the registry
mismatch in layered materials, we prove the existence of a direct relation
between interlayer commensurability and wearless friction in layered materials.
We show that our simple and intuitive model is able to capture, down to fine
details, the experimentally measured frictional behavior of a hexagonal
graphene flake sliding on-top of the surface of graphite. We further predict
that superlubricity is expected to occur in hexagonal boron nitride as well
with tribological characteristics very similar to those observed for the
graphitic system. The success of our method in predicting experimental results
along with its exceptional computational efficiency opens the way for modeling
large-scale material interfaces way beyond the reach of standard simulation
techniques.Comment: 18 pages, 7 figure
Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite
Theory predicts that the currents in scanning tunneling microscopy (STM) and
the attractive forces measured in atomic force microscopy (AFM) are directly
related. Atomic images obtained in an attractive AFM mode should therefore be
redundant because they should be \emph{similar} to STM. Here, we show that
while the distance dependence of current and force is similar for graphite,
constant-height AFM- and STM images differ substantially depending on distance
and bias voltage. We perform spectroscopy of the tunneling current, the
frequency shift and the damping signal at high-symmetry lattice sites of the
graphite (0001) surface. The dissipation signal is about twice as sensitive to
distance as the frequency shift, explained by the Prandtl-Tomlinson model of
atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter
The Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol
The diffusion of glycerol molecules decreases with decreasing temperature as
its viscosity increases in a manner simply described by the Stokes-Einstein(SE)
relation. Approaching the glass transition, this relation breaks down as it
does with a number of other pure liquid glass formers. We have measured the
diffusion coefficient for binary mixtures of glycerol and water and find that
the Stokes-Einstein relation is restored with increasing water concentration.
Our comparison with theory suggests that addition of water postpones the
formation of frustration domainsComment: 4 Pages and 3 Figure
Dynamics of Phononic Dissipation at the Atomic Scale: Dependence on Internal Degrees of Freedom
Dynamics of dissipation of a local phonon distribution to the substrate is a
key issue in friction between sliding surfaces as well as in boundary
lubrication. We consider a model system consisting of an excited nano-particle
which is weakly coupled with a substrate. Using three different methods we
solve the dynamics of energy dissipation for different types of coupling
between the nano-particle and the substrate, where different types of
dimensionality and phonon densities of states were also considered for the
substrate. In this paper, we present our analysis of transient properties of
energy dissipation via phonon discharge in the microscopic level towards the
substrate. Our theoretical analysis can be extended to treat realistic
lubricant molecules or asperities, and also substrates with more complex
densities of states. We found that the decay rate of the nano-particle phonons
increases as the square of the interaction constant in the harmonic
approximation.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
- …