244 research outputs found

    Natural and experimental high‑pressure, shock‑produced terrestrial and extraterrestrial materials

    Get PDF
    AbstractHypervelocity impacts are among the fundamental phenomena occurring during the evolution of the solar system and are characterized by instantaneous ultrahigh pressure and temperature. Varied physicochemical changes have occurred in the building blocks of celestial bodies under such extreme conditions. The constituent material has transformed into a denser form, a high-pressure polymorph. The high-pressure polymorph is also thought to be the constituent of the deep Earth's interior. Hence, experiments using a high-pressure and temperature generating apparatus have been conducted to clarify its crystal structure, pressure–temperature stability range, and transformation mechanisms. A natural high-pressure polymorph (mineral) is found from terrestrial and extraterrestrial rocks that experienced a hypervelocity impact. Mineralogists and planetary scientists have investigated high-pressure minerals in meteorites and rocks near terrestrial craters over a half-century. Here, we report brief reviews about the experiments producing high-pressure polymorphs and then summarize the research histories of high-pressure minerals occurring in shocked meteorites and rocks near terrestrial craters. Finally, some implications of high-pressure minerals found in impact-induced shocked rocks are also mentioned. Graphic abstrac

    The investigation of back-transformation mechanisms of ringwoodite and majorite in the Yamato 75267 H6

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [OA] Antarctic meteorites, Thur. 5 Dec. / 3F Multipurpose conference room, National Institute of Polar Researc

    Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite

    Get PDF
    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 103°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C

    Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites

    Get PDF
    宇宙から飛来した隕石から新鉱物ポワリエライトを発見 --小天体の衝突過程、地球内部の変化等を探る重要な鍵に--. 京都大学プレスリリース. 2021-01-25.A dense magnesium iron silicate polymorph with a structure intermediate between olivine, ringwoodite, and wadsleyite was theoretically predicted about four decades ago. As this group of minerals constitute the major component of shocked meteorites, constraining their transitional forms and behaviour is of potential importance for understanding impact events on their parent bodies. Here we use high-resolution transmission electron microscopy techniques and single-crystal X-ray diffraction analyses to identify naturally occurring examples of this mineral – recently named poirierite – in shocked chondritic meteorites. We observe nanoscale lamellar poirierite topotactically intergrown within wadsleyite, and additionally within ringwoodite as recently reported. Our results confirm the intermediate structure of poirierite and suggest it might be a relay point in the shear transformations between its polymorphs. We propose that poirierite formed during rapid decompression at relatively low temperature in retrograde shock metamorphism of the meteorites

    Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust

    Get PDF
    The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water

    Significant contribution of subseafloor microparticles to the global manganese budget

    Get PDF
    Ferromanganese minerals are widely distributed in subseafloor sediments and on the seafloor in oceanic abyssal plains. Assessing their input, formation and preservation is important for understanding the global marine manganese cycle and associated trace elements. However, the extent of ferromanganese minerals buried in subseafloor sediments remains unclear. Here we show that abundant (108–109 particles cm−3) micrometer-scale ferromanganese mineral particles (Mn-microparticles) are found in the oxic pelagic clays of the South Pacific Gyre (SPG) from the seafloor to the ~100 million-year-old sediments above the basement. Three-dimensional micro-texture, and major and trace element compositional analyses revealed that these Mn-microparticles consist of poorly crystalline ferromanganese oxides precipitating from bottom water. Based on our findings, we extrapolate that 1.5–8.8 × 1028 Mn-microparticles, accounting for 1.28–7.62 Tt of manganese, are globally present in oxic subseafloor sediments. This estimate is at least two orders of magnitude larger than the manganese budget for nodules and crusts on the seafloor. Subseafloor Mn-microparticles thus contribute significantly to the global manganese budget.This study was supported in part by the Japan Society for the Promotion of Science (JSPS) Strategic Fund for Strengthening Leading-Edge Research and Development (to JAMSTEC and F.I.), the JSPS Funding Program for Next Generation World-Leading Researchers (GR102 to F.I.), JSPS Grant-in-Aid for Scientific Research (24687004 and 15H05608 to Y.M., 25871219 to G.-I.U., 15H02810 to R.W., 18H04134, 17H06458 and 17H04582 to Y.T., and 26251041 to F.I.), JSPS Grant-in-Aid for JSPS Fellows (14J00199 to G.-I.U.), and Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Fund Leading Initiative for Excellent Young Researchers (to Kochi University and G.-I.U.)

    Ocean Drilling Perspectives on Meteorite Impacts

    Get PDF
    Extraterrestrial impacts that reshape the surfaces of rocky bodies are ubiquitous in the solar system. On early Earth, impact structures may have nurtured the evolution of life. More recently, a large meteorite impact off the Yucatán Peninsula in Mexico at the end of the Cretaceous caused the disappearance of 75% of species known from the fossil record, including non-avian dinosaurs, and cleared the way for the dominance of mammals and the eventual evolution of humans. Understanding the fundamental processes associated with impact events is critical to understanding the history of life on Earth, and the potential for life in our solar system and beyond. Scientific ocean drilling has generated a large amount of unique data on impact pro- cesses. In particular, the Yucatán Chicxulub impact is the single largest and most sig- nificant impact event that can be studied by sampling in modern ocean basins, and marine sediment cores have been instrumental in quantifying its environmental, cli- matological, and biological effects. Drilling in the Chicxulub crater has significantly advanced our understanding of fundamental impact processes, notably the formation of peak rings in large impact craters, but these data have also raised new questions to be addressed with future drilling. Within the Chicxulub crater, the nature and thickness of the melt sheet in the central basin is unknown, and an expanded Paleocene hemipelagic section would provide insights to both the recovery of life and the climatic changes that followed the impact. Globally, new cores collected from today’s central Pacific could directly sample the downrange ejecta of this northeast-southwest trending impact. Extraterrestrial impacts have been controversially suggested as primary drivers for many important paleoclimatic and environmental events throughout Earth history. However, marine sediment archives collected via scientific ocean drilling and geo- chemical proxies (e.g., osmium isotopes) provide a long-term archive of major impact events in recent Earth history and show that, other than the end-Cretaceous, impacts do not appear to drive significant environmental changes

    Sphene Emotional: How Titanite Was Shocked When the Dinosaurs Died

    Get PDF
    Accessory mineral geochronometers such as zircon, monazite, baddeleyite, and xenotime are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity processes. However, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and U-Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoids from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired International Ocean Discovery Program Site expedition 364 M0077A core preserve multiple sets of polysynthetic twins, most commonly with composition planes (K1), = ~{111}, and shear direction (1) = , and less commonly with the mode K1 = {130}, 1 = ~. In some grains, {130} deformation bands have formed concurrently with shock twins, indicating dislocation glide with Burgers vector b = [341] can be active at shock conditions. Twinning of titanite in these modes, the presence of planar deformation features in shocked quartz, and lack of diagnostic shock microstructures in zircon in the same samples highlights the utility of titanite as a shock indicator for a shock pressure range between ~12 and ~17 GPa. Given the challenges of identifying ancient impact evidence on Earth and other bodies, microstructural analysis of titanite is here demonstrated to be a new avenue for recognizing impact deformation in materials where other impact evidence may be erased, altered, or did not manifest due to low shock pressure
    corecore