331 research outputs found

    Exact solution for two interacting electrons on artificial atoms and molecules in solids

    Full text link
    We present a general scheme for finding the exact eigenstates of two electrons, with on-site repulsive potentials U_i, on I impurities in a macroscopic crystal. The model describes impurities in doped semiconductors and artificial molecules in quantum dots. For quantum dots, the energy cost for adding two electrons is bounded by the single-electron spectrum, and does not diverge when U_i approaches infinity, implying limitations on the validity of the Coulomb blockade picture. Analytic applications on a one-dimensional chain yield quantum delocalization and magnetic transitions.Comment: 4 pages, 1 figur

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O \to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Theory of spin wave excitations of metallic A-type antiferromagnetic manganites

    Full text link
    The spin dynamic of the metallic A-type antiferromagnetic manganites is studied. An effective nearest-neighbour Heisenberg spin wave dispersion is derived from the double exchange model taking into account the superexchange interaction between the core spins. The result of inelastic neutron scattering experiment on Nd0.45Sr0.55MnO3{Nd}_{0.45}{Sr}_{0.55}{Mn} {O}_{3} is qualitatively reproduced. Comparing theory with experimental data two main parameters of the model: nearest-neighbour electron transfer amplitude and superexchange coupling between the core spins are estimated.Comment: to appear in Phys. Rev.

    Resonant x-ray diffraction study of the magnetoresistant perovskite Pr0.6Ca0.4MnO3

    Full text link
    We report a x-ray resonant diffraction study of the perovskite Pr0.6Ca0.4MnO3. At the Mn K-edge, this technique is sensitive to details of the electronic structure of the Mn atoms. We discuss the resonant x-ray spectra measured above and below the charge and orbital ordering phase transition temperature (TCOO = 232 K), and present a detailed analysis of the energy and polarization dependence of the resonant scattering. The analysis confirms that the structural transition is a transition to an orbitally ordered phase in which inequivalent Mn atoms are ordered in a CE-type pattern. The Mn atoms differ mostly by their 3d orbital occupation. We find that the charge disproportionation is incomplete, 3d^{3.5-\delta} and 3d^{3.5+\delta} with \delta\ll0.5 . A revised CE-type model is considered in which there are two Mn sublattices, each with partial e_{g} occupancy. One sublattice consists of Mn atoms with the 3x^{2}-r^{2} or 3y^{2}-r^{2} orbitals partially occupied, the other sublattice with the x^{2}-y^{2} orbital partially occupied.Comment: 15 pages, 15 figure

    Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides

    Full text link
    A theory of Kondo lattices is developed for the t-J model on a square lattice. The spin susceptibility is described in a form consistent with a physical picture of Kondo lattices: Local spin fluctuations at different sites interact with each other by a bare intersite exchange interaction, which is mainly composed of two terms such as the superexchange interaction, which arises from the virtual exchange of spin-channel pair excitations of electrons across the Mott-Hubbard gap, and an exchange interaction arising from that of Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by intersite spin fluctuations developed because of itself. The enhanced exchange interaction is responsible for the development of superconducting fluctuations as well as the Cooper pairing between Gutzwiller's quasi-particles. On the basis of the microscopic theory, we develop a phenomenological theory of low-temperature superconductivity and pseudo-gaps in the under-doped region as well as high-temperature superconductivity in the optimal-doped region. Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and (0,\pm\pi/a), with a the lattice constant, or X points at the chemical potential are swept away by strong inelastic scatterings, and quasi-particles are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or line. As temperatures decrease in the vicinity of superconducting critical temperatures, pseudo-gaps become smaller and the well-defined region is extending toward X points. The condensation of d\gamma-wave Cooper pairs eventually occurs at low enough temperatures when the pair breaking by inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure

    Spin stiffness and quantum fluctuations in C-type and A-type antiferromagnets

    Full text link
    We present a systematic study of quantum fluctuations in the C-type and A-type antiferromagnetic (AF) phases in cubic lattices and in bilayer systems. Using the linear spin-wave theory, we show that the spin stiffness and the quantum corrections to the order parameter and energy obtained for C-AF and A-AF phases decrease with the increasing number of ferromagnetic bonds. Therefore, the quantum spin effects in LaMnO_3 and in LaVO_3 are rather small, suggesting the magnetic moments of 3.91 and 1.89 Bohr's magneton, respectively. They cannot explain the strong reduction of the magnetic order parameter observed in cubic vanadates.Comment: 6 pages, 4 figure

    Phase diagram of the La1x_{1-x}Cax_{x}MnO3_{3} compound for 0.5x0.90.5\leq x\leq 0.9

    Full text link
    We have studied the phase diagram of La1x_{1-x}Cax_{x}MnO3_{3} for 0.5x0.90.5\leq x\leq 0.9 using neutron powder diffraction and magnetization measurements. At 300 K all samples are paramagnetic and single phase with crystallographic symmetry PnmaPnma. As the temperature is reduced a structural transition is observed which is to a charge-ordered state only for certain x. On further cooling the material passes to an antiferromagnetic ground state with Neel temperature TNT_N that depends on x. For 0.8x0.90.8\leq x\leq 0.9 the structural transformation occurs at the same temperature as the magnetic transition. Overall, the neutron diffraction patterns were explained by considering four phase boundaries for which La1x_{1-x}Cax_xMnO3_3 forms a distinct phase: the CE phase at x=0.50.55x=0.5-0.55, the charge-ordered phase at x=2/3, the monoclinic and C-type magnetic structure at x=0.800.85x=0.80-0.85 and the G-type magnetic structure at x=1. Between these phase boundaries the magnetic reflections suggest the existence of mixed compounds containing both phases of the adjacent phase boundaries in a ratio determined by the lever rule
    corecore