10 research outputs found
The Sudden Dominance of blaCTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam
Shigellosis is a disease caused by bacteria belonging to Shigella spp. and is a leading cause of bacterial gastrointestinal infections in infants in unindustrialized countries. The Shigellae are dynamic and capable of rapid change when placed under selective pressure in a human population. Extended spectrum beta lactamases (ESBLs) are enzymes capable of degrading cephalosporins (a group of antimicrobial agents) and the genes that encode them are common in pathogenic E. coli and other related organisms in industrialized countries. In southern Vietnam, we have isolated multiple cephalosporin-resistant Shigella that express ESBLs. Furthermore, over two years these strains have replaced strains isolated from patients with shigellosis that cannot express ESBLs. Our work describes the genes responsible for this characteristic and we investigate one of the elements carrying one of these genes. These finding have implications for treatment of shigellosis and support the growing necessity for vaccine development. Our findings also may be pertinent for other countries undergoing a similar economic transition to Vietnam's and the corresponding effect on bacterial populations
Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality. S. aureus strains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role in S. aureus pathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbit S. aureus models. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureus therapeutic approaches
Targeting Alpha Toxin To Mitigate Its Lethal Toxicity in Ferret and Rabbit Models of Staphylococcus aureus Necrotizing Pneumonia
The role broad-spectrum antibiotics play in the spread of antimicrobial resistance, coupled with their effect on the healthy microbiome, has led to advances in pathogen-specific approaches for the prevention or treatment of serious bacterial infections. One approach in clinical testing is passive immunization with a monoclonal antibody (MAb) targeting alpha toxin for the prevention or treatment of Staphylococcus aureus pneumonia. Passive immunization with the human anti-alpha toxin MAb, MEDI4893*, has been shown to improve disease outcome in murine S. aureus pneumonia models. The species specificity of some S. aureus toxins necessitates testing anti-S. aureus therapeutics in alternate species. We developed a necrotizing pneumonia model in ferrets and utilized an existing rabbit pneumonia model to characterize MEDI4893* protective activity in species other than mice. MEDI4893* prophylaxis reduced disease severity in ferret and rabbit pneumonia models against both community-associated methicillin-resistant S. aureus (MRSA) and hospital-associated MRSA strains. In addition, adjunctive treatment of MEDI4893* with either vancomycin or linezolid provided enhanced protection in rabbits relative to the antibiotics alone. These results confirm that MEDI4893 is a promising candidate for immunotherapy against S. aureus pneumonia
MEDI3902 Correlates of Protection against Severe Pseudomonas aeruginosa Pneumonia in a Rabbit Acute Pneumonia Model.
Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens and is a leading cause of hospital-associated infections. With dwindling options for antibiotic-resistant infections, a new paradigm for treatment and disease resolution is required. MEDI3902, a bispecific antibody targeting the P. aeruginosa type III secretion (T3S) protein PcrV and Psl exopolysaccharide, was previously shown to mediate potent protective activity in murine infection models. With the current challenges associated with the clinical development of narrow-spectrum agents, robust preclinical efficacy data in multiple animal species are desirable. Here, we sought to develop a rabbit P. aeruginosa acute pneumonia model to further evaluate the activity of MEDI3902 intervention. In the rabbit model of acute pneumonia, prophylaxis with MEDI3902 exhibited potent dose-dependent protection, whereas those receiving control IgG developed fatal hemorrhagic necrotizing pneumonia between 12 and 54 h after infection. Blood biomarkers (e.g., partial pressure of oxygen [pO2], partial pressure of carbon dioxide [pCO2], base excess, lactate, and creatinine) were grossly deranged for the vast majority of control IgG-treated animals but remained within normal limits for MEDI3902-treated animals. In addition, MEDI3902-treated animals exhibited a profound reduction in P. aeruginosa organ burden and a marked reduction in the expression of proinflammatory mediators from lung tissue, which correlated with reduced lung histopathology. These results confirm that targeting PcrV and Psl via MEDI3902 is a promising candidate for immunotherapy against P. aeruginosa pneumonia
Recommended from our members
Treatment Efficacy of MEDI3902 in Pseudomonas aeruginosa Bloodstream Infection and Acute Pneumonia Rabbit Models.
Pseudomonas aeruginosa is a challenge for clinicians due to increasing drug resistance and dwindling treatment options. We report on the activity of MEDI3902, an antibody targeting type 3 secretion protein PcrV and Psl exopolysaccharide, in rabbit bloodstream and lung infection models. MEDI3902 prophylaxis or treatment was protective in both acute models and exhibited enhanced activity when combined with a subtherapeutic dose of meropenem. These findings further support MEDI3902 for the prevention or treatment of serious P. aeruginosa infections
Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder x-ray diffraction
In the present study, a series of solid dispersions of the drug nimodipine using polyethylene glycol as carrier were prepared following the hot-melt method. Micro-Raman spectroscopy in conjunction with X-ray powder diffractometry was used for the characterization of the solid structure, including spatial distribution, physical state, and presence of polymorphs, as well as storage stability of nimodipine in its solid formulations. The effect of storage time on drug stability was investigated by examination of the samples 6 months and 18 months after preparation. Confocal micro-Raman mapping performed on the samples showed that the drug was not uniformly distributed on a microscopic level. The presence of crystals of nimodipine with sizes varying between one and several micrometers was detected, and the crystal size seemed to increase with overall drug content. In samples examined 6 months after preparation it was found that the crystals existed mainly as the racemic compound, whereas after 18 months of storage mainly crystal conglomerates were observed