80 research outputs found

    Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk

    Get PDF
    Breast cancer is a major cause of cancer-related deaths in women. It is known that obesity is one of the risk factors of breast cancer. The subject of our interest was genes: FTO, MC4R and NRXN3–associated with obesity. In this study we have analyzed frequencies of genomic variants in FTO, MC4R and NRXN3 in the group of 134 breast cancer patients. We genotyped two polymorphic sites located in FTO gene (rs993909 and rs9930506), one polymorphic site of MC4R gene (rs17782313) and one polymorphic site of NRXN3 gene (rs10146997). Our hypothesis was that above mentioned SNPs could participate in carcinogenesis. Our research has showed that only rs10146997 was significantly (P = 0.0445) associated with higher risk of breast cancer development (OR = 0.66 (95% CI 0.44–0.99)). Moreover, G allele carriers in rs10146997 of the NRXN3 gene were the youngest patients at onset of breast cancer. On the basis of our research we suggest that further functional may elucidate the role of genomic variation in breast cancer development

    Recessive Antimorphic Alleles Overcome Functionally Redundant Loci to Reveal TSO1 Function in Arabidopsis Flowers and Meristems

    Get PDF
    Arabidopsis TSO1 encodes a protein with conserved CXC domains known to bind DNA and is homologous to animal proteins that function in chromatin complexes. tso1 mutants fall into two classes due to their distinct phenotypes. Class I, represented by two different missense mutations in the CXC domain, leads to failure in floral organ development, sterility, and fasciated inflorescence meristems. Class II, represented by a nonsense mutation and a T-DNA insertion line, develops wild-type–like flowers and inflorescences but shows severely reduced fertility. The phenotypic variability of tso1 alleles presents challenges in determining the true function of TSO1. In this study, we use artificial microRNA, double mutant analysis, and bimolecular fluorescence complementation assay to investigate the molecular basis underlying these two distinct classes of phenotypes. We show that the class I mutants could be converted into class II by artificial microRNA knockdown of the tso1 mutant transcript, suggesting that class I alleles produce antimorphic mutant proteins that interfere with functionally redundant loci. We identified one such redundant factor coded by the closely related TSO1 homolog SOL2. We show that the class I phenotype can be mimicked by knocking out both TSO1 and its homolog SOL2 in double mutants. Such antimorphic alleles targeting redundant factors are likely prevalent in Arabidopsis and maybe common in organisms with many sets of paralogous genes such as human. Our data challenge the conventional view that recessive alleles are always hypomorphic or null and that antimorphic alleles are always dominant. This study shows that recessive alleles can also be antimorphic and can produce a phenotype more severe than null by interfering with the function of related loci. This finding adds a new paradigm to classical genetic concepts, with important implications for future genetic studies both in basic research as well as in agriculture and medicine

    The association of serum lipids with the histological pattern of rectosigmoid adenoma in Taiwanese adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mortality rate of colorectal cancer ranks third behind lung and hepatic cancer in Taiwan. Colorectal cancer mostly arises from adenomatous polyps of left colon. The aim of our study was to examine the association of serum lipids with the histological pattern of rectosigmoid adenoma.</p> <p>Methods</p> <p>There were 2,506 eligible examinees aged 20 and above who underwent sigmoidoscopy as a screening examination in National Cheng Kung University Hospital between January 2003 and October 2006. They were classified into three groups: tubular adenoma (333 subjects), villous-rich (tubulovillous/villous) adenoma (53 subjects) and normal (2,120 subjects). We defined high total cholesterol (TC) as a level ≧200 mg/dl, low high-density lipoprotein cholesterol (HDL-C) as a level <40 mg/dL, and high triglyceride (TG) as a level ≧200 mg/dl according to the third report of the National Cholesterol Education Program expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Adenoma histology was classified as tubular, tubulovillous and villous according to the proportion of villous part.</p> <p>Results</p> <p>Among the study population, 333 subjects (13.3%) had tubular adenomas and 53 subjects (2.1%) had villous-rich adenomas. The odds ratio (OR) for villous-rich adenoma in subjects with TG≧200 mg/dL compared to those with TG < 200 mg/dL was 3.20 (95% confidence interval [CI]:1.71-6.01), after adjusting for age, gender, general obesity, central obesity, diabetes, hypertension, smoking, and alcohol consumption. If further taking high TC and low HDL-C into consideration, the OR was 4.42 (95% CI:2.03-9.63).</p> <p>Conclusions</p> <p>Our study showed that subjects with high serum TG tended to have a higher risk of tubulovillous/villous adenoma in rectosigmoid colon. Therefore, reducing the serum TG level might be one method to prevent the incidence of colorectal cancer.</p

    Adult reversal of cognitive phenotypes in neurodevelopmental disorders

    Get PDF
    Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults

    Gentamicin Rapidly Inhibits Mitochondrial Metabolism in High-Frequency Cochlear Outer Hair Cells

    Get PDF
    Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies

    The neurobiology of mouse models syntenic to human chromosome 15q

    Get PDF
    Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism

    Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin

    Get PDF
    Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines(1,2). Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm(3,4). Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. (5)), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome

    Hippocampal pyramidal cells: the reemergence of cortical lamination

    Get PDF
    The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function
    corecore