5 research outputs found

    Salinization: the ultimate threat to temperate lakes, with particular reference to Southeastern Wisconsin (USA)

    No full text
    Many lakes in Southeastern Wisconsin (the metropolitan-Milwaukee area) are gradually becoming increasingly “salty”. While these waterbodies would not be considered presently to be saline lakes, there has been a rapid increase in the chloride concentrations in most of these lakes over the last 30 years, with the lakes increasing from a mean chloride concentration of about 19 mg/L to over 100 mg/L in some cases. While ecological impacts can be expected when chloride values exceed 250 mg/L, the rate of increase presents a basis for concern, especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides. Thus, the origin of the chlorides is anthropogenic: human and industrial wastewaters (treatment of which has effected improvements in trophic status but has not affected other water-borne contaminants) and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region’s waterways. Without taking remedial measures, the rate of salinization is expected to continue to increase, resulting, ultimately, in the alteration of the freshwater systems in the region

    Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain.

    No full text
    Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers
    corecore