6 research outputs found

    Innate and Introduced Resistance Traits in Genetically Modified Aspen Trees and Their Effect on Leaf Beetle Feeding

    Get PDF
    Genetic modifications of trees may provide many benefits, e. g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e. g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction probably less pronounced effect on targeted herbivores

    Invasive Salix fragilis: altered metabolic patterns in Australian streams

    No full text
    Willows (Salix spp.) are listed as a weed of national significance in Australia. Despite this recognition, functional effects of willows on streams compared to native species are largely unknown. Leaves supply carbon to instream food webs, but may also act as surfaces for biofilm, and thus can contribute in different ways to stream metabolism. Salix fragilis L. and Eucalyptus camaldulensis Dehnh. leaves that had been colonised by biofilms were placed into chambers in laboratory conditions, and metabolic rates were measured. Gross Primary Production (GPP) of biofilms on E. camaldulensis leaves after 10 days of incubation were significantly greater than biofilms on S. fragilis leaves. S. fragilis leaves displayed greater rates of microbial decomposition per leaf mass. Autotrophic biomass was one hundred fold greater on E. camaldulensis leaves. The biofilm on E. camaldulensis leaves is likely to support a greater population of grazers, compared to S. fragilis. The alien S. fragilis leaves, therefore, are fuelling a different component of the food web to endemic E. camaldulensis leaves. Endemic Eucalyptus spp. leaves play an important role in temperate Australian streams as a substrate for autotrophic growth and provide a year round pathway for carbon to reach secondary invertebrate consumer
    corecore