22 research outputs found

    Upregulation of hepatic bile acid synthesis via fibroblast growth factor 19 is defective in gallstone disease but functional in overweight individuals

    Get PDF
    Background: Fibroblast growth factor 19 (FGF19) is an enteric hormone regulating bile acid de novo synthesis by sensing ileal bile acid flux. However, the role of FGF19 in cholelithiasis has not yet been elucidated and therefore is investigated in the present study. Methods: Total mRNA and protein were isolated from ileal biopsies and used for tissue expression analysis. FGF19, 7α-hydroxycholesterol (7α-OH-Chol), 27-hydroxycholesterol (27-OH-Chol), and different bile acids were determined in the blood samples. Results: FGF19 serum levels did not differ between gallstone carriers and controls but were significantly decreased in the overweight individuals (−32%, p = 0.0002), irrespective of gallstone status (normalweight to overweight controls −29%, p = 0.0017; normalweight to overweight gallstone carriers −44%, p = 0.0338), and correlated inversely with bodyweight (p < 0.0001, ρ = −0.3317). Compared to non-overweight controls, apical sodium-dependent bile acid transporter expression was significantly diminished in the non-overweight gallstone carriers (−42%, PmRNA = 0.0393; −52%, pprotein = 0.0169) as well as in the overweight controls (−24%, PmRNA = 0.0148; −43%, pprotein = 0.0017). FGF19 expression varied widely and was similar in all groups. A significant negative correlation was noted between 7α-OH-Chol, 27-OH-Chol, and FGF19 serum levels (p < 0.01; ρ7α-OH-Chol = −0.2155; ρ27-OH-Chol = −0.2144) in obesity. Conclusion: Upregulation of hepatic bile acid synthesis via FGF 19 is defective in gallstone disease but functional in overweight individuals

    Open Science principles for accelerating trait-based science across the Tree of Life

    Get PDF
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges

    Open Science principles for accelerating trait-based science across the Tree of Life

    No full text
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges
    corecore