217 research outputs found

    Big Data Analytics for Crisis Management From an Information Processing Theory Perspective: A Multimethodological Study

    Full text link
    COVID-19 pandemic has created disruptions and risks in global supply chains. Big data analytics (BDA) has emerged in recent years as a potential solution for provisioning predictive and pre-emptive information to companies in order to preplan and mitigate the impacts of such risks. The focus of this article is to gain insights into how BDA can help companies combat a crisis like COVID-19 via a multimethodological scientific study. The advent of a crisis like COVID-19 brings with it uncertainties, and information processing theory (IPT) provides a perspective on the ways to deal with such uncertainties. We use IPT, in conjunction with the Crisis Management Theory, to lay the foundation of the article. After establishing the theoretical basis, we conduct two surveys towards supply chain managers, one before and one after the onset of the COVID-19 pandemic in India. We follow it up with qualitative interviews to gain further insights. The application of multiple methods helps ensure the triangulation of results and, hence, enhances the research rigor. Our research finds that although the current adoption of BDA in the Indian industry has not grown to a statistically significant level, there are serious future plans for the industry to adopt BDA for crisis management. The interviews also highlight the current status of adoption and the growth of BDA in the Indian industry. The article interestingly identifies that the traditional barriers to implementing new technologies (like BDA for crisis management) are no longer present in the current times. The COVID-19 pandemic has hence accelerated technology adoption and at the same time uncovered some BDA implementation challenges in practice (e.g., a lack of data scientists)

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination

    Get PDF
    Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk factors for visceral leishmaniasis (VL) in the Indian subcontinent. Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge, we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir, clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale. Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector. Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple levels. Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment regimens for PKDL are urgently needed to enable the elimination initiative to succeed

    Combination antibiotic therapy for community-acquired pneumonia

    Get PDF
    Community-acquired pneumonia (CAP) is a common and potentially serious illness that is associated with morbidity and mortality. Although medical care has improved during the past decades, it is still potentially lethal. Streptococcus pneumoniae is the most frequent microorganism isolated. Treatment includes mandatory antibiotic therapy and organ support as needed. There are several antibiotic therapy regimens that include β-lactams or macrolides or fluoroquinolones alone or in combination. Combination antibiotic therapy achieves a better outcome compared with monotherapy and it should be given in the following subset of patients with CAP: outpatients with comorbidities and previous antibiotic therapy, nursing home patients with CAP, hospitalized patients with severe CAP, bacteremic pneumococcal CAP, presence of shock, and necessity of mechanical ventilation. Better outcome is associated with combination therapy that includes a macrolide for wide coverage of atypical pneumonia, polymicrobial pneumonia, or resistant Streptococcus pneumoniae. Macrolides have shown different properties other than antimicrobial activity, such as anti-inflammatory properties. Although this evidence comes from observational, most of them retrospective and nonblinded studies, the findings are consistent. Ideally, a prospective, multicenter, randomized trial should be performed to confirm these findings

    Abrogated Inflammatory Response Promotes Neurogenesis in a Murine Model of Japanese Encephalitis

    Get PDF
    Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors

    Uterine Epithelial Cell Regulation of DC-SIGN Expression Inhibits Transmitted/Founder HIV-1 Trans Infection by Immature Dendritic Cells

    Get PDF
    Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1.Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection.Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1

    Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy

    Get PDF
    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides
    corecore