3,067 research outputs found

    Patient engagement with antibiotic messaging in secondary care: a qualitative feasibility study of the ‘review & revise’ experience

    Get PDF
    Background: We aimed to investigate and optimise the acceptability and usefulness of a patient leaflet about antibiotic prescribing decisions made during hospitalisation, and to explore individual patient experiences and preferences regarding the process of antibiotic prescription ‘review & revise’ which is a key strategy to minimise antibiotic overuse in hospitals. Methods: In this qualitative study, run within the feasibility study of a large, cluster-randomised stepped wedge trial of 36 hospital organisations, a series of semi-structured, think-aloud telephone interviews were conducted and data were analysed using thematic analysis. Fifteen adult patients who had experienced a recent acute medical hospital admission during which they had been prescribed antimicrobials and offered a patient leaflet about antibiotic prescribing were recruited to the study. Results: Participants reacted positively to the leaflet, reporting that it was both an accessible and important source of information which struck the appropriate balance between informing and reassuring. Participants all valued open communication with clinicians, and were keen to be involved in antibiotic prescribing decisions, with individuals reporting positive experiences regarding antibiotic prescription changes or stopping. Many participants had prior experience or knowledge of antibiotics and resistance, and generally welcomed efforts to reduce antibiotic usage. Overall, there was a feeling that healthcare professionals (HCPs) are trusted experts providing the most appropriate treatment for individual patient conditions. Conclusions: This study offers novel insights into how patients within secondary care are likely to respond to messages advocating a reduction in the use of antibiotics through the ‘review & revise’ approach. Due to the level of trust that patients place in their care provider, encouraging HCPs within secondary care to engage patients with greater communication and information provision could provide great advantages in the drive to reduce antibiotic use. It may also be beneficial for HCPs to view patient experiences as cumulative events that have the potential to impact future behaviour around antibiotic use. Finally, pre-testing messages about antibiotic prescribing and resistance is vital to dispelling any misconceptions either around effectiveness of treatment for patients, or perceptions of how messages may be received

    A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics

    Get PDF
    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; and ryanodine, a diterpenoid that modulates Ca2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca2+ dynamics. Cytosolic Ca2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental observations qualitatively, as well as quantitatively within a range of physiological parametric values. The model also illustrated how increased intercellular coupling led to smooth muscle coordination and the genesis of vascular tone

    Association of parenting practices to encourage or discourage physical activity with Hispanic preschool children's objectively measured physical activity

    Get PDF
    Oral Session - Determinants of physical activity in children and adolescents: no. O.002Conference Theme: Promoting Healthy Eating and Activity WorldwidePURPOSE: Assess the association of parenting practices (PP) to encourage or discourage physical activity (PA) with Hispanic 3-5 year old children’s objectively measured PA METHOD: Cross-sectional study of Hispanic parent-child dyads (n= 84) who reported their demographics and frequency of using PP that encourage (structure/encouragement) or discourage (promote inactive transport, promote screen time, psychological control, and safety concerns) child PA using verified scales. Children wore Actigraph GT3X accelerometers recording 15 second epochs for 7 days. Allowing for re-wears …postprin

    A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    Get PDF
    Background: In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. Results: Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion: Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism

    Semi-supervised learning for detecting human trafficking

    Get PDF

    The history of the Y chromosome in man

    Get PDF
    Studies of the Y chromosome over the past few decades have opened a window into the history of our species, through the reconstruction and exploitation of a patrilineal (Y-genealogical) tree based on several hundred single-nucleotide variants (SNVs). A new study validates, refines and extends this tree by incorporating >65,000 Y-linked variants identified in 1,244 men representing worldwide diversity
    • …
    corecore