28 research outputs found

    A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.)

    Get PDF
    Late leaf spot (LLS) and rust are two major foliar diseases of groundnut (Arachis hypogaea L.) that often occur together leading to 50–70% yield loss in the crop. A total of 268 recombinant inbred lines of a mapping population TAG 24 × GPBD 4 segregating for LLS and rust were used to undertake quantitative trait locus (QTL) analysis. Phenotyping of the population was carried out under artificial disease epiphytotics. Positive correlations between different stages, high to very high heritability and independent nature of inheritance between both the diseases were observed. Parental genotypes were screened with 1,089 simple sequence repeat (SSR) markers, of which 67 (6.15%) were found polymorphic. Segregation data obtained for these markers facilitated development of partial linkage map (14 linkage groups) with 56 SSR loci. Composite interval mapping (CIM) undertaken on genotyping and phenotyping data yielded 11 QTLs for LLS (explaining 1.70–6.50% phenotypic variation) in three environments and 12 QTLs for rust (explaining 1.70–55.20% phenotypic variation). Interestingly a major QTL associated with rust (QTLrust01), contributing 6.90–55.20% variation, was identified by both CIM and single marker analysis (SMA). A candidate SSR marker (IPAHM 103) linked with this QTL was validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of another mapping population (TG 26 × GPBD 4). Therefore, this marker should be useful for introgressing the major QTL for rust in desired lines/varieties of groundnut through marker-assisted backcrossing

    Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachishypogaea L.)

    Get PDF
    Cultivated groundnut or peanut (Arachis hypogaea L.), an allotetraploid (2n = 4x = 40), is a self pollinated and widely grown crop in the semi-arid regions of the world. Improvement of drought tolerance is an important area of research for groundnut breeding programmes. Therefore, for the identification of candidate QTLs for drought tolerance, a comprehensive and refined genetic map containing 191 SSR loci based on a single mapping population (TAG 24 × ICGV 86031), segregating for drought and surrogate traits was developed. Genotyping data and phenotyping data collected for more than ten drought related traits in 2–3 seasons were analyzed in detail for identification of main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) using QTL Cartographer, QTLNetwork and Genotype Matrix Mapping (GMM) programmes. A total of 105 M-QTLs with 3.48–33.36% phenotypic variation explained (PVE) were identified using QTL Cartographer, while only 65 M-QTLs with 1.3–15.01% PVE were identified using QTLNetwork. A total of 53 M-QTLs were such which were identified using both programmes. On the other hand, GMM identified 186 (8.54–44.72% PVE) and 63 (7.11–21.13% PVE), three and two loci interactions, whereas only 8 E-QTL interactions with 1.7–8.34% PVE were identified through QTLNetwork. Interestingly a number of co-localized QTLs controlling 2–9 traits were also identified. The identification of few major, many minor M-QTLs and QTL × QTL interactions during the present study confirmed the complex and quantitative nature of drought tolerance in groundnut. This study suggests deployment of modern approaches like marker-assisted recurrent selection or genomic selection instead of marker-assisted backcrossing approach for breeding for drought tolerance in groundnut

    New early-maturing germplasm lines for utilization in chickpea improvement

    Get PDF
    Early-maturity helps chickpea to avoid terminal heat and drought and increases its adaptation especially in the sub-tropics. Breeding for early-maturing, high-yielding and broad-based cultivars requires diverse sources of early-maturity. Twenty-eight early-maturing chickpea germplasm lines representing wide geographical diversity were identified using core collection approach and evaluated with four control cultivars in five environments for 7 qualitative and 16 quantitative traits at ICRISAT Centre, Patancheru, India. Significant genotypic variance was observed for days to flowering and maturity in all the environments indicating scope for selection. Genotypes × environment interactions were significant for days to flowering and maturity and eight other agronomic traits. ICC 16641, ICC 16644, ICC 11040, ICC 11180, and ICC 12424 were very early-maturing, similar to or earlier than control cultivars Harigantars and ICCV 2. The early-maturing accessions produced on average 22.8% more seed yield than the mean of four control cultivars in the test environments. ICC 14648, ICC 16641 and ICC 16644 had higher 100-seed weight than control cultivars, Annigeri and ICCV 2. Cluster analysis delineated three clusters, which differed significantly for all the traits. First cluster comprised three controls, ICCV 96029, Harigantars, ICCV 2 and two germplasm lines, ICC 16644 and ICC 16641, second cluster comprised 13 germplasm lines and control cultivar Annigeri, and third cluster comprised 13 germplasm lines. Maturity was main basis of delineation of the first cluster from others. Plot yield and its associated traits were the main basis for delineation of the second cluster

    Genomics: Decoding the ancestors of peanut

    No full text

    Phylogenetic relationships in genus <it>Arachis </it>based on ITS and 5.8S rDNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Arachis </it>comprises 80 species and it is subdivided into nine taxonomic sections (<it>Arachis</it>, <it>Caulorrhizae</it>, <it>Erectoides</it>, <it>Extranervosae</it>, <it>Heteranthae</it>, <it>Procumbentes</it>, <it>Rhizomatosae</it>, <it>Trierectoides</it>, and <it>Triseminatae</it>). This genus is naturally confined to South America and most of its species are native to Brazil. In order to provide a better understanding of the evolution of the genus, we reconstructed the phylogeny of 45 species using the variation observed on nucleotide sequences in internal transcribed spacer regions (ITS1 and ITS2) and 5.8 S of nuclear ribosomal DNA.</p> <p>Results</p> <p>Intraspecific variation was detected, but in general it was not enough to place accessions of the same species in different clades. Our data support the view that <it>Arachis </it>is a monophyletic group and suggested <it>Heteranthae </it>as the most primitive section of genus <it>Arachis</it>. The results confirmed the circumscriptions of some sections (<it>Caulorrhizae</it>, <it>Extranervosae</it>), but raised questions about others. Sections <it>Erectoides</it>, <it>Trierectoides </it>and <it>Procumbentes </it>were not well defined, while sections <it>Arachis </it>and <it>Rhizomatosae </it>seem to include species that could be moved to different sections. The division of section <it>Arachis </it>into A and B genome species was also observed in the phylogenetic tree and these two groups of species may not have a monophyletic origin. The 2n = 2x = 18 species of section <it>Arachis </it>(<it>A. praecox</it>, <it>A</it>. <it>palustris </it>and <it>A. decora</it>) were all placed in the same clade, indicating they are closely related to each other, and their genomes are more related to B genome than to the A genome. Data also allowed insights on the origin of tetraploid <it>A. glabrata</it>, suggesting rhizome appeared twice within the genus and raising questions about the placement of that species in section <it>Rhizomatosae</it>.</p> <p>Conclusion</p> <p>The main clades established in this study in general agreed with many other studies that have used other types of evidences and sets of species, being some of them included in our study and some not. Thus, the relationships established can be a useful framework for future systematic reviews of genus <it>Arachis </it>and for the selection of species to pre-breeding programs.</p
    corecore