23 research outputs found

    FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion

    No full text
    BACKGROUND: Metastasis is the major cause of cancer-related death. Forkhead Box M1 (FoxM1) is a master regulator of tumor metastasis. This study aims to identify new FoxM1 targets in regulating tumor metastasis using bioinformatics tools as well as biological experiments. METHODS: Illumina microarray was used to profile WT and PTTG1 knockout HCT116 cells. R2 Genomics Analysis was used to identify PTTG1 as a potential FoxM1 targeted gene. Luciferase reporter array, EMSA and Chromatin Immunoprecipitation (ChIP) were used to determine the binding of FoxM1 to PTTG1 promoter. Boyden chamber assay was used to evaluate the effects of FoxM1-PTTG1 on cell migration and invasion. Splenic-injection induced liver metastasis model was used to evaluate the effects of FoxM1-PTTG1 on liver metastasis of colorectal cancer. RESULTS: Analyses of multiple microarray datasets derived from human colorectal cancer indicated that correlation levels of FoxM1 and pituitary tumor transforming gene (PTTG1) are highly concordant (R = 0.68 ~ 0.89, p = 2.1E-226 ~ 9.6E-86). FoxM1 over-expression increased and knock-down decreased PTTG1 expression. Luciferase reporter assay identified that the −600 to −300 bp region of PTTG1 promoter is important for FoxM1 to enhance PTTG1 promoter activity. EMSA and ChIP assays confirmed that FoxM1 directly binds to PTTG1 promoter at the −391 to −385 bp region in colorectal cancer cells. Boyden chamber assay indicated that both FoxM1 and PTTG1 regulate migration and invasion of HCT116 and SW620 colorectal cancer cells. Further in vivo assays indicated that PTTG1 knock out decreased the liver metastasis of FoxM1 over-expressing HCT116 cells. Microarray analyses identified 662 genes (FDR < 0.05) differentially expressed between WT and PTTG1−/− HCT116 cells. Among them, dickkopf homolog 1 (DKK1), a known WNT pathway inhibitor, was suppressed by PTTG1 and FoxM1. CONCLUSIONS: PTTG1 is a FoxM1 targeted gene. FoxM1 binds to PTTG1 promoter to enhance PTTG1 transcription, and FoxM1-PTTG1 pathway promotes colorectal cancer migration and invasion.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Metabolic responses to long-term pharmacological inhibition of CB1-receptor activity in mice in relation to dietary fat composition

    Get PDF
    Background and objectives: The antiobesity effects of suppressed endocannabinoid signaling may rely, at least in part, on changes in lipid fluxes. As fatty acids exert specific effects depending on their level of saturation, we hypothesized that the dietary fatty acid composition would influence the outcome of treatment with a CB1-receptor antagonist (rimonabant). Methods: Mice were treated with rimonabant (10 mg kg-1 body weight per day) or vehicle while equicalorically fed either a low-fat diet (LF), a high-fat (HF) diet or an HF diet in which 10% of the saturated fatty acids (SFAs) were replaced by poly-unsaturated fatty acids (PUFA) from fish oil (FO). Food intake and body weight were registered daily. Indirect calorimetry was performed and feces were collected. After 3 weeks, mice were killed for blood and tissue collection. Results: Relative to the LF diet, the HF diet caused anticipated metabolic derangements, which were partly reversed by the HF/FO diet. The HF/FO diet, however, was most obesity-promoting despite inhibiting lipogenesis as indicated by low gene expression levels of lipogenic enzymes. On all three diets, rimonabant treatment improved metabolic derangements and led to significantly lower body weight gain than their respective controls. This latter effect appeared largest in the HF/FO group, but occurred without major changes in nutrient absorption and energy expenditure. Conclusion: The effects of chronic rimonabant treatment on body weight gain occurred irrespective of diet-induced changes in lipogenic activity, food intake and daily energy expenditure, and were, in fact, most pronounced in HF/FO mice. The effects of dietary PUFA replacement in an HF diet on expansion of adipose tissue might allow the favorable effects of dietary PUFA on dyslipidemia and hepatic steatosis. In light of other disadvantageous effects of weight gain, this might be a risky trade-off.
    corecore