1,898 research outputs found

    Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice

    Get PDF
    Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying this speed dependent amplitude modulation is achieved remain obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors which signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, are the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases

    A spectral method for elliptic equations: the Dirichlet problem

    Full text link
    An elliptic partial differential equation Lu=f with a zero Dirichlet boundary condition is converted to an equivalent elliptic equation on the unit ball. A spectral Galerkin method is applied to the reformulated problem, using multivariate polynomials as the approximants. For a smooth boundary and smooth problem parameter functions, the method is proven to converge faster than any power of 1/n with n the degree of the approximate Galerkin solution. Examples in two and three variables are given as numerical illustrations. Empirically, the condition number of the associated linear system increases like O(N), with N the order of the linear system.Comment: This is latex with the standard article style, produced using Scientific Workplace in a portable format. The paper is 22 pages in length with 8 figure

    The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing.</p> <p>Results</p> <p>The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales.</p> <p>Conclusion</p> <p>MSI addresses the need for a flexible and high-performing agent based model of the immune system.</p

    Neural Decision Boundaries for Maximal Information Transmission

    Get PDF
    We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information transmitted about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure

    Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    Get PDF
    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    Functional intercomparison of intraoperative radiotherapy equipment – Photon Radiosurgery System

    Get PDF
    BACKGROUND: Intraoperative Radiotherapy (IORT) is a method by which a critical radiation dose is delivered to the tumour bed immediately after surgical excision. It is being investigated whether a single high dose of radiation will impart the same clinical benefit as a standard course of external beam therapy. Our centre has four Photon Radiosurgery Systems (PRS) currently used to irradiate breast and neurological sites. MATERIALS AND METHODS: The PRS comprises an x-ray generator, control console, quality assurance tools and a mobile gantry. We investigated the dosimetric characteristics of each source and its performance stability over a period of time. We investigated half value layer, output diminution factor, internal radiation monitor (IRM) reproducibility and depth-doses in water. The half value layer was determined in air by the broad beam method, using high purity aluminium attenuators. To quantify beam hardening at clinical depths, solid water attenuators of 5 and 10 mm were placed between the x-ray probe and attenuators. The ion chamber current was monitored over 30 minutes to deduce an output diminution factor. IRM reproducibility was investigated under various exposures. Depth-dose curves in water were obtained at distances up to 35 mm from the probe. RESULTS: The mean energies for the beam attenuated by 5 and 10 mm of solid water were derived from ICRU Report 17 and found to be 18 and 24 keV. The average output level over a period of 30 minutes was found to be 99.12%. The average difference between the preset IRM limit and the total IRM count was less than 0.5%. For three x-ray sources, the average difference between the calculated and actual treatment times was found to be 0.62% (n = 30). The beam attenuation in water varied by approximately 1/r(3). CONCLUSION: The x-ray sources are stable over time. Most measurements were found to lie within the manufacturer's tolerances and an intercomparison of these checks suggests that the four x-ray sources have similar performance characteristics

    Gender differences in colorectal cancer: implications for age at initiation of screening

    Get PDF
    There is some variation regarding age at initiation of screening for colorectal cancer (CRC) between countries, but the same age of initiation is generally recommended for women and men within countries, despite important gender differences in the epidemiology of CRC. We have explored whether, and to what extent, these differences would be relevant regarding age at initiation of CRC screening. Using population-based cancer registry data from the US and national mortality statistics from different countries, we looked at cumulative 10-year incidence and mortality of CRC reached among men at ages 50, 55, and 60, and found that women mainly reached equivalent levels when 4 to 8 years older. The gender differences were remarkably constant across populations and over time. These patterns suggest that gender differentiation of age at initiation may be worthwhile to utilise CRC-screening resources more efficiently

    Understanding how excess lead iodide precursor improves halide perovskite solar cell performance

    Get PDF
    The presence of excess lead iodide in halide perovskites has been key for surpassing 20% photon-to-power conversion efficiency. To achieve even higher power conversion efficiencies, it is important to understand the role of remnant lead iodide in these perovskites. To that end, we explored the mechanism facilitating this effect by identifying the impact of excess lead iodide within the perovskite film on charge diffusion length, using electron-beam-induced current measurements, and on film formation properties, from grazing-incidence wide-angle X-ray scattering and high-resolution transmission electron microscopy. Based on our results, we propose that excess lead iodide in the perovskite precursors can reduce the halide vacancy concentration and lead to formation of azimuthal angle-oriented cubic alpha-perovskite crystals in-between 0 degrees and 90 degrees. We further identify a higher perovskite carrier concentration inside the nanostructured titanium dioxide layer than in the capping layer. These effects are consistent with enhanced lead iodide-rich perovskite solar cell performance and illustrate the role of lead iodide

    Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery

    Get PDF
    BACKGROUND: An increase in the number of attendees due to acute gastroenteritis and fever was noted at one hospital emergency room in Taiwan over a seven-day period from July to August, 2001. Molecular and epidemiological surveys were performed to trace the possible source of infection. METHODS: An epidemiological investigation was undertaken to determine the cause of the outbreak. Stool and blood samples were collected according to standard protocols per Center for Disease Control, Taiwan. Typing of the Salmonella isolates from stool, blood, and food samples was performed with serotyping, antibiotypes, and pulsed field gel electrophoresis (PFGE) following XbaI restriction enzyme digestion. RESULTS: Comparison of the number of patients with and without acute gastroenteritis (506 and 4467, respectively) during the six weeks before the outbreak week revealed a significant increase in the number of patients during the outbreak week (162 and 942, respectively) (relative risk (RR): 1.44, 95% confidence interval (CI): 1.22–1.70, P value < 0.001). During the week of the outbreak, 34 of 162 patients with gastroenteritis were positive for Salmonella, and 28 of these 34 cases reported eating the same kind of bread. In total, 28 of 34 patients who ate this bread were positive for salmonella compared to only 6 of 128 people who did not eat this bread (RR: 17.6, 95%CI 7.9–39.0, P < 0.001). These breads were produced by the same bakery and were distributed to six different traditional Chinese markets., Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was isolated from the stool samples of 28 of 32 individuals and from a recalled bread sample. All S. Enteritidis isolates were of the same antibiogram. PFGE typing revealed that all except two of the clinical isolates and the bread isolates were of the same DNA macrorestriction pattern. CONCLUSIONS: The egg-covered bread contaminated with S. Enteritidis was confirmed as the vehicle of infection. Alertness in the emergency room, surveillance by the microbiology laboratory, prompt and thorough investigation to trace the source of outbreaks, and institution of appropriate control measures provide effective control of community outbreaks
    corecore