38 research outputs found

    Engineered allosteric activation of kinases in living cells

    Get PDF
    Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. We describe here a new approach to confer allosteric regulation specifically on the catalytic activity of kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity, but does not affect other protein interactions. Catalytic activity is restored by addition of rapamycin or non-immunosuppresive analogs (Fig. 1A). We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells, thereby demonstrating a novel role for FAK in regulation of membrane dynamics. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. Successful regulation of Src and p38 suggest that modification of this highly conserved site will be applicable to other kinases
    corecore