299 research outputs found

    QServer: A Biclustering Server for Prediction and Assessment of Co-Expressed Gene Clusters

    Get PDF
    BACKGROUND: Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified) substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. RESULTS: We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i) prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii) functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO) terms, and (iii) visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. CONCLUSION: We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation

    Albiglutide, a Long Lasting Glucagon-Like Peptide-1 Analog, Protects the Rat Heart against Ischemia/Reperfusion Injury: Evidence for Improving Cardiac Metabolic Efficiency

    Get PDF
    BACKGROUND: The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS: Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE: Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function

    Firsthand Experience and The Subsequent Role of Reflected Knowledge in Cultivating Trust in Global Collaboration

    Get PDF
    While scholars contend that firsthand experience - time spent onsite observing the people, places, and norms of a distant locale - is crucial in globally distributed collaboration, how such experience actually affects interpersonal dynamics is poorly understood. Based on 47 semistructured interviews and 140 survey responses in a global chemical company, this paper explores the effects of firsthand experience on intersite trust. We find firsthand experience leads not just to direct knowledge of the other, but also knowledge of the self as seen through the eyes of the other - what we call “reflected knowledge”. Reflected and direct knowledge, in turn, affect trust through identification, adaptation, and reduced misunderstandings

    Comparison between the HCV IRES domain IV RNA structure and the Iron Responsive Element

    Get PDF
    Background: Serum ferritin and hepatic iron concentrations are frequently elevated in patients who are chronically infected with the hepatitis C virus (HCV), and hepatic iron concentration has been used to predict response to interferon therapy, but these correlations are not well understood. The HCV genome contains an RNA structure resembling an iron responsive element (IRE) in its internal ribosome entry site (IRES) structural domain IV (dIV). An IRE is a stem loop structure used to control the expression of eukaryotic proteins involved in iron homeostasis by either inhibiting ribosomal binding or protecting the mRNA from nuclease degradation. The HCV structure, located within the binding site of the 40S ribosomal subunit, might function as an authentic IRE or by an IRE-like mechanism.----- Results: Electrophoretic mobility shift assays showed that the HCV IRES domain IV structure does not interact with the iron regulatory protein 1 (IRP1) in vitro. Systematic HCV IRES RNA mutagenesis suggested that IRP1 cannot accommodate the shape of the wild type HCV IRES dIV RNA structure.----- Conclusion The HCV IRES dIV RNA structure is not an authentic IRE. The possibility that this RNA structure is responsible for the observed correlations between intracellular iron concentration and HCV infection parameters through an IRE-like mechanism in response to some other cellular signal remains to be tested

    The Salmonella Genomic Island 1 Is Specifically Mobilized In Trans by the IncA/C Multidrug Resistance Plasmid Family

    Get PDF
    BACKGROUND: The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency <10(-9)). In our collection, ESBL gene-carrying plasmids were mainly from the IncHI2 and I1 groups and thus were unable to mobilize SGI1. However, the horizontal transfer of SGI1 was shown to be specifically mediated by conjugative helper plasmids of the broad-host-range IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. CONCLUSIONS/SIGNIFICANCE: The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives

    Asymmetric recurrent laryngeal nerve conduction velocities and dorsal cricoarytenoid muscle electromyographic characteristics in clinically normal horses

    Get PDF
    The dorsal cricoarytenoid (DCA) muscles, are a fundamental component of the athletic horse’s respiratory system: as the sole abductors of the airways, they maintain the size of the rima glottis which is essential for enabling maximal air intake during intense exercise. Dysfunction of the DCA muscle leads to arytenoid collapse during exercise, resulting in poor performance. An electrodiagnostic study including electromyography of the dorsal cricoarytenoid muscles and conduction velocity testing of the innervating recurrent laryngeal nerves (RLn) was conducted in horses with normal laryngeal function. We detected reduced nerve conduction velocity of the left RLn, compared to the right, and pathologic spontaneous activity (PSA) of myoelectrical activity within the left DCA muscle in half of this horse population and the horses with the slowest nerve conduction velocities. The findings in this group of horses are consistent with left sided demyelination and axonal loss, consistent with Recurrent Laryngeal Neuropathy (RLN), a highly prevalent degenerative disorder of the RLn in horses that predominantly affects the left side. The detection of electromyographic changes compatible with RLN in clinically unaffected horses is consistent with previous studies that identified “subclinical” subjects, presenting normal laryngeal function despite neuropathologic changes within nerve and muscle confirmed histologically

    Spatial Anisotropies and Temporal Fluctuations in Extracellular Matrix Network Texture during Early Embryogenesis

    Get PDF
    Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis—as determined by fluctuating textural properties
    corecore