70 research outputs found

    The effect of partial portacaval transposition on the canine liver

    Get PDF
    The influence of nonhepatic splanchnic venous blood on dog liver morphology and biochemical content was investigated by performing partial portacaval transposition, anastomosing the supra-adrenal inferior vena cava to either the right or left branch of the main portal vein. In the resulting preparation, nonhepatic splanchnic venous blood supplies one portion of the liver and systemic venous blood perfuses the remaining fraction,. Seven dogs were studied for 70 to 94 days, 3 with right and 4 with left transposition. No clinical abnormalities were noted. Transient enzyme elevations were seen early after operation but reverted to normal. The most striking feature was the gross and microscopic atrophy and deglycogenation which occurred in the part of the liver receiving systemic venous blood. Blood flow studies were performed in 8 additional dogs with an electromagnetic square wave flowmeter. Flow was measured in both right and left portal vein branches before and 1 to 4 hours after partial transposition to either the right (4 dogs) or left (4 dogs) main branch. Flow rates were increased in 11 instances and remained essentially the same in 5. In 2 more dogs, a jugular venous autograft was placed between the abdominal aorta and the right or left main portal vein branch. Atrophy and deglycogenation in the portion receiving arterial blood was comparable to that described above in liver fractions perfused with systemic venous blood. The evidence from these and earlier experiments that splanchnic venous blood contains a hepatotrophic substance is discussed. © 1967

    The Use of a Stringent Selection System Allows the Identification of DNA Elements that Augment Gene Expression

    Get PDF
    The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines. We isolated genomic DNA fragments upstream from the human Rb1 and p73 gene loci and cloned them around an expression cassette that contains a very stringent selection marker. Due to the stringency of the selection marker, hardly any colony survives without flanking DNA elements. We tested fourteen ~3500 bp DNA stretches from the Rb1 and p73 loci. Only two ~3500 bp long DNA fragments, called Rb1E and Rb1F, induced many colonies in the context of the stringent selection system and these colonies displayed high protein expression levels. Functional analysis showed that the Rb1 DNA fragments contained no enhancer, promoter, or STAR activity. Our data show the potential of a methodology to identify novel gene expression augmenting DNA elements in an unbiased manner

    Expression analysis of mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2) in more than 300 human tumors and matching normal tissues reveals their co-expression in gynecologic malignancies

    Get PDF
    BACKGROUND: Mammaglobin A (SCGB2A2) and lipophilin B (SCGB1D2), two members of the secretoglobin superfamily, are known to be co-expressed in breast cancer, where their proteins form a covalent complex. Based on the relatively high tissue-specific expression pattern, it has been proposed that the mammaglobin A protein and/or its complex with lipophilin B could be used in breast cancer diagnosis and treatment. In view of these clinical implications, the aim of the present study was to analyze the expression of both genes in a large panel of human solid tumors (n = 309), corresponding normal tissues (n = 309) and cell lines (n = 11), in order to evaluate their tissue specific expression and co-expression pattern. METHODS: For gene and protein expression analyses, northern blot, dot blot hybridization of matched tumor/normal arrays (cancer profiling arrays), quantitative RT-PCR, non-radioisotopic RNA in situ hybridization and immunohistochemistry were used. RESULTS: Cancer profiling array data demonstrated that mammaglobin A and lipophilin B expression is not restricted to normal and malignant breast tissue. Both genes were abundantly expressed in tumors of the female genital tract, i.e. endometrial, ovarian and cervical cancer. In these four tissues the expression pattern of mammaglobin A and lipophilin B was highly concordant, with both genes being down-, up- or not regulated in the same tissue samples. In breast tissue, mammaglobin A expression was down-regulated in 49% and up-regulated in 12% of breast tumor specimens compared with matching normal tissues, while lipophilin B was down-regulated in 59% and up-regulated in 3% of cases. In endometrial tissue, expression of mammaglobin A and lipophilin B was clearly up-regulated in tumors (47% and 49% respectively). Both genes exhibited down-regulation in 22% of endometrial tumors. The only exceptions to this concordance of mammaglobin A/lipophilin B expression were normal and malignant tissues of prostate and kidney, where only lipophilin B was abundantly expressed and mammaglobin A was entirely absent. RNA in situ hybridization and immunohistochemistry confirmed expression of mammaglobin A on a cellular level in endometrial and cervical cancer and their corresponding normal tissues. CONCLUSION: Altogether, these data suggest that expression of mammaglobin A and lipophilin B might be controlled in different tissues by the same regulatory transcriptional mechanisms. Diagnostic assays based on mammaglobin A expression and/or the mammaglobin A/lipophilin B complex appear to be less specific for breast cancer, but with a broader spectrum of potential applications, which includes gynecologic malignancies

    Phenylbutyrate Counteracts Shigella Mediated Downregulation of Cathelicidin in Rabbit Lung and Intestinal Epithelia: A Potential Therapeutic Strategy

    Get PDF
    BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs) that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB) reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB), a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR) and release of the CAP-18 peptide/protein in stool (Western blot). PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from secondary respiratory infections that frequently are the lethal causes in dysentery

    A Novel Strategy to Construct Yeast Saccharomyces cerevisiae Strains for Very High Gravity Fermentation

    Get PDF
    Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes

    Unusual Regulation of a Leaderless Operon Involved in the Catabolism of Dimethylsulfoniopropionate in Rhodobacter sphaeroides

    Get PDF
    Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5′-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5′ leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL
    corecore