1,162 research outputs found

    Atypical audiovisual speech integration in infants at risk for autism

    Get PDF
    The language difficulties often seen in individuals with autism might stem from an inability to integrate audiovisual information, a skill important for language development. We investigated whether 9-month-old siblings of older children with autism, who are at an increased risk of developing autism, are able to integrate audiovisual speech cues. We used an eye-tracker to record where infants looked when shown a screen displaying two faces of the same model, where one face is articulating/ba/and the other/ga/, with one face congruent with the syllable sound being presented simultaneously, the other face incongruent. This method was successful in showing that infants at low risk can integrate audiovisual speech: they looked for the same amount of time at the mouths in both the fusible visual/ga/− audio/ba/and the congruent visual/ba/− audio/ba/displays, indicating that the auditory and visual streams fuse into a McGurk-type of syllabic percept in the incongruent condition. It also showed that low-risk infants could perceive a mismatch between auditory and visual cues: they looked longer at the mouth in the mismatched, non-fusible visual/ba/− audio/ga/display compared with the congruent visual/ga/− audio/ga/display, demonstrating that they perceive an uncommon, and therefore interesting, speech-like percept when looking at the incongruent mouth (repeated ANOVA: displays x fusion/mismatch conditions interaction: F(1,16) = 17.153, p = 0.001). The looking behaviour of high-risk infants did not differ according to the type of display, suggesting difficulties in matching auditory and visual information (repeated ANOVA, displays x conditions interaction: F(1,25) = 0.09, p = 0.767), in contrast to low-risk infants (repeated ANOVA: displays x conditions x low/high-risk groups interaction: F(1,41) = 4.466, p = 0.041). In some cases this reduced ability might lead to the poor communication skills characteristic of autism

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    CRF1-R Activation of the Dynorphin/Kappa Opioid System in the Mouse Basolateral Amygdala Mediates Anxiety-Like Behavior

    Get PDF
    Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF) were triggered by CRF1-R activation of the dynorphin/kappa opioid receptor (KOR) system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM). The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI), and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF2-R agonist urocortin III did not affect open arm time, and mice lacking CRF2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF1-R activation may mediate anxiety and CRF2-R may encode aversion. Using a phosphoselective antibody (KORp) to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA) of wildtype, but not in mice pretreated with the selective CRF1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was surprising, and these results suggest that CRF and dynorphin/KOR systems may coordinate stress-induced anxiety behaviors and aversive behaviors via different mechanisms

    The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape

    Get PDF
    Human mRNA DeXD/H-box helicases are ubiquitous molecular motors that are required for the majority of cellular processes that involve RNA metabolism. One of the most abundant is eIF4A, which is required during the initiation phase of protein synthesis to unwind regions of highly structured mRNA that would otherwise impede the scanning ribosome. Dysregulation of protein synthesis is associated with tumorigenesis, but little is known about the detailed relationships between RNA helicase function and the malignant phenotype in solid malignancies. Therefore, immunohistochemical analysis was performed on over 3000 breast tumors to investigate the relationship among expression of eIF4A1, the helicase-modulating proteins eIF4B, eIF4E and PDCD4, and clinical outcome. We found eIF4A1, eIF4B and eIF4E to be independent predictors of poor outcome in ER-negative disease, while in contrast, the eIF4A1 inhibitor PDCD4 was related to improved outcome in ER-positive breast cancer. Consistent with these data, modulation of eIF4A1, eIF4B and PCDC4 expression in cultured MCF7 cells all restricted breast cancer cell growth and cycling. The eIF4A1-dependent translatome of MCF7 cells was defined by polysome profiling, and was shown to be highly enriched for several classes of oncogenic genes, including G-protein constituents, cyclins and protein kinases, and for mRNAs with G/C-rich 5′UTRs with potential to form G-quadruplexes and with 3′UTRs containing microRNA target sites. Overall, our data show that dysregulation of mRNA unwinding contributes to the malignant phenotype in breast cancer via preferential translation of a class of genes involved in pro-oncogenic signaling at numerous levels. Furthermore, immunohistochemical tests are promising biomarkers for tumors sensitive to anti-helicase therapies

    The role of non-medical therapeutic approaches in the rehabilitation of Complex Regional Pain Syndrome

    Get PDF
    Purpose of the review: Non-medical therapeutic approaches are fundamental to the management of Complex Regional Pain Syndrome (CRPS) in order to promote the best outcome for patients. This review focuses on three key approaches underpinning CRPS rehabilitation, namely: physiotherapy and occupational therapy, psychological approaches and education and self-management. Recent Findings: Recently published European standards outline the quality of therapeutic care that people with CRPS must receive. Early initiated therapy is essential to optimise outcomes, underpinned by patient education. Therapists should promote early movement of the affected limb and encourage re-engagement with usual activities as immobilisation is known to have negative outcomes. There is evidence to support the possible long-term benefit of graded motor imagery and mirror therapy. Psychological assessment should include identification of depression and post-traumatic stress disorder, as treatment of these conditions may improve the trajectory of CRPS. Novel therapies include neurocognitive approaches and those addressing spatial bias, both of which should provide a focus for future research.Summary: There exists a broad range of non-medical therapeutic approaches to rehabilitation for CPRS that are thought to be important. However, the evidence for their efficacy is limited. Further research using standardised outcomes would be helpful in developing targeted therapies for the future

    Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics

    Get PDF
    Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11β-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the in vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex
    • …
    corecore