64 research outputs found

    Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans

    Get PDF
    Background: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood. Results: Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction. Conclusion: Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food sensing

    The MDT-15 Subunit of Mediator Interacts with Dietary Restriction to Modulate Longevity and Fluoranthene Toxicity in Caenorhabditis elegans

    Get PDF
    Dietary restriction (DR), the limitation of calorie intake while maintaining proper nutrition, has been found to extend life span and delay the onset of age-associated disease in a wide range of species. Previous studies have suggested that DR can reduce the lethality of environmental toxins. To further examine the role of DR in toxin response, we measured life spans of the nematode Caenorhabditis elegans treated with the mutagenic polyaromatic hydrocarbon, fluoranthene (FLA). FLA is a direct byproduct of combustion, and is one of U.S. Environmental Protection Agency's sixteen priority environmental toxins. Treatment with 5 Β΅g/ml FLA shortened the life spans of ad libitum fed nematodes, and DR resulted in increased sensitivity to FLA. To determine the role of detoxifying enzymes in the toxicity of FLA, we tested nematodes with mutations in the gene encoding the MDT-15 subunit of mediator, a transcriptional coactivator that regulates genes involved in fatty acid metabolism and detoxification. Mutation of mdt-15 increased the life span of FLA treated animals compared to wild-type animals with no difference observed between DR and ad libitum fed mdt-15 animals. We also examined mutants with altered insulin-IGF-1-like signaling (IIS), which is known to modulate life span and stress resistance in C. elegans independently of DR. Mutation of the genes coding for the insulin-like receptor DAF-2 or the FOXO-family transcription factor DAF16 did not alter the animals' susceptibility to FLA compared to wild type. Taken together, our results suggest that certain compounds have increased toxicity when combined with a DR regimen through increased metabolic activation. This increased metabolic activation appears to be mediated through the MDT-15 transcription factor and is independent of the IIS pathway

    Optimizing Dietary Restriction for Genetic Epistasis Analysis and Gene Discovery in C. elegans

    Get PDF
    Dietary restriction (DR) increases mammalian lifespan and decreases susceptibility to many age-related diseases. Lifespan extension due to DR is conserved across a wide range of species. Recent research has focused upon genetically tractable model organisms such as C. elegans to uncover the genetic mechanisms that regulate the response to DR, in the hope that this information will provide insight into the mammalian response and yield potential therapeutic targets. However, no consensus exists as to the best protocol to apply DR to C. elegans and potential key regulators of DR are protocol-specific. Here we define a DR method that better fulfills criteria required for an invertebrate DR protocol to mirror mammalian studies. The food intake that maximizes longevity varies for different genotypes and informative epistasis analysis with another intervention is only achievable at this β€˜optimal DR’ level. Importantly therefore, the degree of restriction imposed using our method can easily be adjusted to determine the genotype-specific optimum DR level. We used this protocol to test two previously identified master regulators of DR in the worm. In contrast to previous reports, we find that DR can robustly extend the lifespan of worms lacking the AMP-activated protein kinase catalytic subunit AAK2 or the histone deacetylase SIR-2.1, highlighting the importance of first optimizing DR to identify universal regulators of DR mediated longevity

    DAF-2/Insulin-Like Signaling in C. elegans Modifies Effects of Dietary Restriction and Nutrient Stress on Aging, Stress and Growth

    Get PDF
    Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan.We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants.These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways

    HIF-1 Modulates Dietary Restriction-Mediated Lifespan Extension via IRE-1 in Caenorhabditis elegans

    Get PDF
    Dietary restriction (DR) extends lifespan in various species and also slows the onset of age-related diseases. Previous studies from flies and yeast have demonstrated that the target of rapamycin (TOR) pathway is essential for longevity phenotypes resulting from DR. TOR is a conserved protein kinase that regulates growth and metabolism in response to nutrients and growth factors. While some of the downstream targets of TOR have been implicated in regulating lifespan, it is still unclear whether additional targets of this pathway also modulate lifespan. It has been shown that the hypoxia inducible factor-1 (HIF-1) is one of the targets of the TOR pathway in mammalian cells. HIF-1 is a transcription factor complex that plays key roles in oxygen homeostasis, tumor formation, glucose metabolism, cell survival, and inflammatory response. Here, we describe a novel role for HIF-1 in modulating lifespan extension by DR in Caenorhabditis elegans. We find that HIF-1 deficiency results in extended lifespan, which overlaps with that by inhibition of the RSKS-1/S6 kinase, a key component of the TOR pathway. Using a modified DR method based on variation of bacterial food concentrations on solid agar plates, we find that HIF-1 modulates longevity in a nutrient-dependent manner. The hif-1 loss-of-function mutant extends lifespan under rich nutrient conditions but fails to show lifespan extension under DR. Conversely, a mutation in egl-9, which increases HIF-1 activity, diminishes the lifespan extension under DR. This deficiency is rescued by tissue-specific expression of egl-9 in specific neurons and muscles. Increased lifespan by hif-1 or DR is dependent on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress. Therefore, our results demonstrate a tissue-specific role for HIF-1 in the lifespan extension by DR involving the IRE-1 ER stress pathway

    Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans

    Get PDF
    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction

    Sensory Perception of Food and Insulin-Like Signals Influence Seizure Susceptibility

    Get PDF
    Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-Ξ³ and CaMKII

    High-throughput profiling of caenorhabditis elegans starvation-responsive microRNAs

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans

    mTOR: from growth signal integration to cancer, diabetes and ageing

    Get PDF
    In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France

    Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    Get PDF
    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund
    • …
    corecore