17 research outputs found

    A multi-modal network approach to model public transport accessibility impacts of bicycle-train integration policies

    Get PDF
    In the Netherlands, the bicycle plays an important in station access and, to a lesser extent, in station egress. There is however fairly little knowledge in the potential effects of bicycle-train integration policies. The aim of this paper is to examine the impacts of bicycle-train integration policies on train ridership and job accessibility for public transport users.MethodsWe extended the Dutch National Transport Model (NVM) by implementing a detailed bicycle network linked to the public transport network, access/egress mode combinations and station specific access and egress penalties by mode and station type derived from a stated choice survey. Furthermore, the effects of several bicycletrain integration policy scenarios were examined for a case study for Randstad South, in the Netherlands, comprising a dense train network with 54 train stations.ConclusionsOur analysis shows that improving the quality of bicycle routes and parking can substantially increase train ridership and potential job accessibility for train users. Large and medium stations are more sensitive to improvements in bicycle-train integration policies, while small stations are more sensitive to improvements in the train level of service

    Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation

    Get PDF
    Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation

    Dual requirement of cytokine and activation receptor triggering for cytotoxic control of murine cytomegalovirus by NK cells

    Get PDF
    Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells

    Innate immunity regulates adaptive immune response: lessons learned from studying the interplay between NK and CD8+ T cells during MCMV infection

    Get PDF
    Natural killer (NK) cells play a crucial role in early immune response against cytomegalovirus infection. A large and mounting body of data indicate that these cells are involved in the regulation of the adaptive immune response as well. By using mouse cytomegalovirus (MCMV) as a model, several groups provided novel insights into the role of NK cells in the development and kinetics of antiviral CD8+ T cell response. Depending on infection conditions, virus strain and the genetic background of mice used, NK cells are either positive or negative regulators of the CD8+ T cell response. At present, there is no unique explanation for the observed differences between various experimental systems used. In this review we discuss the mechanisms involved in the interplay between NK and CD8+ T cells in the early control of MCMV infection
    corecore