12 research outputs found

    Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metacrangonyctidae (Amphipoda, Crustacea) is an enigmatic continental subterranean water family of marine origin (thalassoid). One of the species in the genus, <it>Metacrangonyx longipes</it>, is endemic to the Balearic islands of Mallorca and Menorca (W Mediterranean). It has been suggested that the origin and distribution of thalassoid crustaceans could be explained by one of two alternative hypotheses: (1) active colonization of inland freshwater aquifers by a marine ancestor, followed by an adaptative shift; or (2) passive colonization by stranding of ancestral marine populations in coastal aquifers during marine regressions. A comparison of phylogenies, phylogeographic patterns and age estimations of clades should discriminate in favour of one of these two proposals.</p> <p>Results</p> <p>Phylogenetic relationships within <it>M. longipes </it>based on three mitochondrial DNA (mtDNA) and one nuclear marker revealed five genetically divergent and geographically structured clades. Analyses of cytochrome oxidase subunit 1 (<it>cox1</it>) mtDNA data showed the occurrence of a high geographic population subdivision in both islands, with current gene flow occurring exclusively between sites located in close proximity. Molecular-clock estimations dated the origin of <it>M. longipes </it>previous to about 6 Ma, whereas major cladogenetic events within the species took place between 4.2 and 2.0 Ma.</p> <p>Conclusions</p> <p><it>M. longipes </it>displayed a surprisingly old and highly fragmented population structure, with major episodes of cladogenesis within the species roughly correlating with some of the major marine transgression-regression episodes that affected the region during the last 6 Ma. Eustatic changes (vicariant events) -not active range expansion of marine littoral ancestors colonizing desalinated habitats-explain the phylogeographic pattern observed in <it>M. longipes</it>.</p

    Structure of the TRPA1 ion channel suggests regulatory mechanisms

    No full text
    The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents
    corecore