28 research outputs found

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

    Get PDF
    Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity

    Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    Get PDF
    Background: Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet b cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings: Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8 + T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8 + T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8 + T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions: Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8 + T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strateg

    Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells

    Get PDF
    Expansion of the vasa vasorum network has been observed in a variety of systemic and pulmonary vascular diseases. We recently reported that a marked expansion of the vasa vasorum network occurs in the pulmonary artery adventitia of chronically hypoxic calves. Since hypoxia has been shown to stimulate ATP release from both vascular resident as well as circulatory blood cells, these studies were undertaken to determine if extracellular ATP exerts angiogenic effects on isolated vasa vasorum endothelial cells (VVEC) and/or if it augments the effects of other angiogenic factors (VEGF and basic FGF) known to be present in the hypoxic microenvironment. We found that extracellular ATP dramatically increases DNA synthesis, migration, and rearrangement into tube-like networks on Matrigel in VVEC, but not in pulmonary artery (MPAEC) or aortic (AOEC) endothelial cells obtained from the same animals. Extracellular ATP potentiated the effects of both VEGF and bFGF to stimulate DNA synthesis in VVEC but not in MPAEC and AOEC. Analysis of purine and pyrimidine nucleotides revealed that ATP, ADP and MeSADP were the most potent in stimulating mitogenic responses in VVEC, indicating the involvement of the family of P2Y1-like purinergic receptors. Using pharmacological inhibitors, Western blot analysis, and Phosphatidylinositol-3 kinase (PI3K) in vitro kinase assays, we found that PI3K/Akt/mTOR and ERK1/2 play a critical role in mediating the extracellular ATP-induced mitogenic and migratory responses in VVEC. However, PI3K/Akt and mTOR/p70S6K do not significantly contribute to extracellular ATP-induced tube formation on Matrigel. Our studies indicate that VVEC, isolated from the sites of active angiogenesis, exhibit distinct functional responses to ATP, compared to endothelial cells derived from large pulmonary or systemic vessels. Collectively, our data support the idea that extracellular ATP participates in the expansion of the vasa vasorum that can be observed in hypoxic conditions

    Aphid-host plant interactions: Does aphid honeydew exactly reflect the host plant amino acid composition?

    Full text link
    peer reviewedPlants provide aphids with unbalanced and low concentrations of amino acids. Likely, intracellular symbionts improve the aphid nutrition by participating to the synthesis of essential amino acids. To compare the aphid amino acid uptakes from the host plant and the aphids amino acid excretion into the honeydew, host plant exudates (phloem + xylem) from infested and uninfested Vicia faba L. plants were compared to the honeydew produced by two aphid species (Acyrthosiphon pisum Harris and Megoura viciae Buckton) feeding on V. faba. Our results show that an aphid infestation modifies the amino acid composition of the infested broad bean plant since the global concentration of amino acids significantly increased into the host plant in response to aphid infestations. Specifically, the concentrations of two amino acids glutamine and asparagine were strongly enhanced. The amino acid profiles from honeydews were similar for the two aphid species, but the concentrations found into the honeydews were generally lower than those measured in the exudates of infested plants (aphids uptakes). This work also highlights that aphids take large amounts of amino acids into the host plant, especially glutamine and asparagine which are converted into glutamic and aspartic acids but also into other essential amino acids. The amino acid profiles differed between the host plant exudates and the aphid excretion product. Finally, this study highlights that the pea aphid - a “specialist” for the V. faba host plant - induced more important modifications into the host plant amino acid composition than the “generalist” aphid M. viciae.Solaphi

    デング2型ウイルスプロテアーゼを標的とした新規抗ウイルス薬探索のための蛍光発色によるアッセイ法の開発

    Get PDF
    Background: Dengue disease is one of the most significant vector-borne illnesses in the world. The emergence and re-emergence of dengue infections in many parts of the world affect millions annually and continue to burden public health systems especially in low-income populations. Advances in dengue vaccine development showed promising results; however, protection seems to be suboptimal. There is no licensed chemotherapeutic agent against dengue to date. An ideal scenario of combinatorial vaccination of high-risk individuals and chemotherapy of the diseased during outbreaks may compensate for the meager protection offered by the vaccine. The denguevirus protease is important to viral replication and, as such, has been identified as a potential target for antivirals. It is, therefore, our objective to establish and optimize an appropriate screening method for use during the earlystages of drug development for dengue. Methods: In this study, we developed and optimized a biochemical assay system for use in screening compound libraries against dengue virus protease. We tested the selected protease inhibitors with a cell-based assay to determine inhibition of viral replication. Results: We have presented direct plots of substrate kinetics data showing an apparent inhibition of the protease at excessive substrate concentrations. The most common sources of interference that may have affected the saidobservation were elucidated. Finally, a screen was done on an existing compound library using the developed method. The compounds selected in this study showed inhibitory activity against both the recombinant dengue protease and cell-based infectivity assays. Conclusions: Our study shows the practicality of a customized biochemical assay to find possible inhibitors of dengue viral protease during the initial stages of drug discovery.長崎大学学位論文 学位記番号:博(医歯薬)甲第890号 学位授与年月日:平成28年9月20日Author: Gianne Eduard L. Ulanday, Kenta Okamoto and Kouichi MoritaCitation: Tropical Medicine and Health, 44, 22; 2016Nagasaki University (長崎大学)課程博
    corecore