18 research outputs found

    Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Get PDF
    International audienceAbstract: Aims: to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) using Cardiac Magnetic Resonance (CMR). Methods: We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level >= 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP), providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE), reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results: Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and < 0.001), multivessel disease (p = 0.02 for both) and hyperglycemia (p < 0.001). Moreover, they were characterized by higher levels of HbA(1c) (p = 0.01 and 0.04), peak plasma Creatine Kinase (p < 0.001), left ventricular end-systolic volume (p = 0.005 and < 0.001), and lower left ventricular ejection fraction (p = 0.001 and < 0.001). In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion: Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR

    Fast, three-dimensional free-breathing MR imaging of myocardial infarction: A feasibility study

    No full text
    Imaging delayed hyperenhancement of myocardial infarction is most commonly performed using an inversion recovery (IR) prepared 2D breathhold segmented k-space gradient echo (FGRE) sequence. Since only one slice is acquired per breathhold in this technique, 12-16 successive breathholds are required for complete anatomical coverage of the heart. This prolongs the overall scan time and may be exhausting for patients. A navigator-echo gated, free-breathing, 3D FGRE sequence is proposed that can be used to acquire a single slab covering the entire heart with high spatial resolution. The use of a new variable sampling in time (VAST) acquisition scheme enables the entire 3D volume to be acquired in 1.5-2 min, minimizing artifacts from bulk motion and diaphragmatic drift and contrast variations due to contrast media washout

    High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience

    No full text
    PurposeTo investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700T/m/s for in vivo human brain imaging, with a dedicated, head-only gradient coil. Materials and MethodsSimulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T magnetic resonance imaging (MRI) system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. ResultsAs compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. ConclusionOur results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. (C) 2016 International Society for Magnetic Resonance in Medicine18111sciescopu
    corecore