86 research outputs found
Bayesian Spatio-Temporal Modeling of Schistosoma japonicum Prevalence Data in the Absence of a Diagnostic ‘Gold’ Standard
Schistosomiasis is a serious public health problem in the People's Republic of China and elsewhere, and mapping of risk areas is important for guiding control interventions. Here, a 10-year surveillance database from Dangtu County in the southeastern part of the People's Republic of China was utilized for modeling the spatial and temporal distribution of infections in relation to environmental features and socioeconomic factors. Disease surveillance was done on the basis of a serological test, and we explicitly considered the imperfect sensitivity and specificity of the test when modeling the ‘true’ infection prevalence of Schistosoma japonicum. We then produced a risk map for S. japonicum transmission, which can assist decision making for local control interventions. Our work emphasizes the importance of accounting for the uncertainty in the diagnosis of schistosomiasis, and the potential of predicting the spatial and temporal distribution of the disease when using a Bayesian modeling framework. Our study can therefore serve as a template for future risk profiling of neglected tropical diseases studies, particularly when exploring spatial and temporal disease patterns in relation to environmental and socioeconomic factors, and how to account for the influence of diagnostic uncertainty
Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer
Neoadjuvant and adjuvant chemotherapies provide survival benefits to breast cancer patients, in particular in estrogen receptor negative (ER-) cancers, by reducing rates of recurrences. It is assumed that the benefits of (neo)adjuvant chemotherapy are due to the killing of disseminated, residual cancer cells, however, there is no formal evidence for it. Here, we provide experimental evidence that ER- breast cancer cells that survived high-dose Doxorubicin and Methotrexate based chemotherapies elicit a state of immunological dormancy. Hallmark of this dormant phenotype is the sustained activation of the IRF7/IFN-beta/IFNAR axis subsisting beyond chemotherapy treatment. Upregulation of IRF7 in treated cancer cells promoted resistance to chemotherapy, reduced cell growth and induced switching of the response from a myeloid derived suppressor cell-dominated immune response to a CD4(+)/CD8(+) T cell-dependent anti-tumor response. IRF7 silencing in tumor cells or systemic blocking of IFNAR reversed the state of dormancy, while spontaneous escape from dormancy was associated with loss of IFN-beta production. Presence of IFN-beta in the circulation of ER- breast cancer patients treated with neoadjuvant Epirubicin chemotherapy correlated with a significantly longer distant metastasis-free survival. These findings establish chemotherapy-induced immunological dormancy in ER- breast cancer as a novel concept for (neo)adjuvant chemotherapy activity, and implicate sustained activation of the IRF7/IFN-beta/IFNAR pathway in this effect. Further, IFN-beta emerges as a potential predictive biomarker and therapeutic molecule to improve outcome of ER- breast cancer patients treated with (neo)adjuvant chemotherapy.Peer reviewe
Stress-induced changes in group behaviour
Testing animals in groups can provide valuable data for investigating behavioural stress responses. However, conventional measures typically focus on the behaviour of individual animals or on dyadic interactions. Here, we aimed to determine metrics describing the behaviour of grouping animals that can reveal differences in stress responses. Using zebrafish (Danio rerio) as a model, we observed replicated shoals both immediately and 24 hours after exposure to a novel environment, as an assessment of temporal change in response to an acute stressor. We quantified various standard behavioural measures in combination with metrics describing group structure, including different proximity, social, and spatial metrics. Firstly, we showed a high collinearity between most of the analysed metrics, suggesting that they describe similar aspects of the group dynamics. After metric selection, we found that under acute stress shoals had significantly higher shoal densities, a lower variation in nearest neighbour distances and were in closer proximity to the walls compared to the same groups tested 24 hours later, indicating a reduction in acute stress over time. Thus, the use of group metrics could allow for the refinement of behavioural protocols carried out in a range of research areas, by providing sensitive and rich data in a more relevant social context
Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation
Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al
Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection
Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease
The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance
It has long been considered that the important biological effects of ionizing radiation are a direct consequence of unrepaired or misrepaired DNA damage occurring in the irradiated cells. It was presumed that no effect would occur in cells in the population that receive no direct radiation exposure. However, in vitro evidence generated over the past two decades has indicated that non-targeted cells in irradiated cell cultures also experience significant biochemical and phenotypic changes that are often similar to those observed in the targeted cells. Further, nontargeted tissues in partial body-irradiated rodents also experienced stressful effects, including oxidative and oncogenic effects. This phenomenon, termed the “bystander response,” has been postulated to impact both the estimation of health risks of exposure to low doses/low fluences of ionizing radiation and the induction of second primary cancers following radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism, gap-junction intercellular communication, and DNA repair, have been proposed to regulate radiation-induced bystander effects. The latter mechanisms are major mediators of the system responses to ionizing radiation exposure, and our knowledge of the biochemical and molecular events involved in these processes is reviewed in this chapter
- …