6 research outputs found
Site-specific Phosphorylation of Histone H3K36 Methyltransferase Set2p and Demethylase Jhd1p is Required for Stress Responses in Saccharomyces cerevisiae
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes. Many of these enzymes are extensively phosphorylated in vivo; however, the functions of almost all phosphosites remain unknown. Here, we comprehensively analyse the phosphoregulation of the yeast histone methylation network by functionally investigating 40 phosphosites on six enzymes. A total of 82 genomically-edited S. cerevisiae strains were generated through mutagenesis of sites to aspartate as a phosphomimetic or alanine as a phosphonull. These phosphosite mutants were screened for changes in native H3K4, H3K36, and H3K79 methylation levels, and for sensitivity to environmental stress conditions. For methyltransferase Set2p, we found that phosphorylation at threonine 127 significantly decreased H3K36 methylation in vivo, and that an N-terminal phosphorylation cluster at serine residues 6, 8, and 10 is required for the diamide stress response. Proteomic analysis of Set2p phosphosite mutants revealed a specific downregulation of membrane-associated proteins and processes, consistent with changes brought about by SET2 deletion and the sensitivity of mutants to diamide. For demethylase Jhd1p, we found that its sole phosphorylation site at serine 44 is required for the cold stress response. This study represents the first systematic investigation into the phosphoregulation of the epigenetic network in any eukaryote, and shows that phosphosites on histone methylation enzymes are required for a normal cellular response to stress in S. cerevisiae
Cross-linking mass spectrometry discovers, evaluates, and corroborates structures and proteinâprotein interactions in the human cell
Significant recent advances in structural biology, particularly in the field of cryoelectron microscopy, have dramatically expanded our ability to create structural models of proteins and protein complexes. However, many proteins remain refractory to these approaches because of their low abundance, low stability, orâin the case of complexesâsimply not having yet been analyzed. Here, we demonstrate the power of using cross-linking mass spectrometry (XL-MS) for the high-throughput experimental assessment of the structures of proteins and protein complexes. This included those produced by high-resolution but in vitro experimental data, as well as in silico predictions based on amino acid sequence alone. We present the largest XL-MS dataset to date, describing 28,910 unique residue pairs captured across 4,084 unique human proteins and 2,110 unique proteinâprotein interactions. We show that models of proteins and their complexes predicted by AlphaFold2, and inspired and corroborated by the XL-MS data, offer opportunities to deeply mine the structural proteome and interactome and reveal mechanisms underlying protein structure and function
Reliable identification of protein-protein interactions by crosslinking mass spectrometry
Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.TU Berlin, Open-Access-Mittel â 2021DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"DFG, 392923329, GRK 2473: Bioaktive Peptide - Innovative Aspekte zur Synthese und BiosyntheseDFG, 426290502, Erfassung der strukturellen Organisation des Mycoplasma pneumoniae Proteoms mittels in-Zell Crosslinking-Massenspektrometri
Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms
This study investigated the enzyme-substrate interaction between Saccharomyces cerevisiae arginine methyltransferase Hmt1p and nucleolar protein Npl3p, using chemical cross linking/mass spectrometry (XL/MS). We show that XL/MS can capture transient interprotein interactions that occur during the process of methylation, involving a disordered region in Npl3p with tandem SRGG repeats, and we confirm that Hmt1p and Npl3p exist as homomultimers. Additionally, the study investigated the interdependencies between variables of an XL/MS experiment that lead to the identification of identical or different cross-linked peptides. We report that there are substantial benefits, in terms of biologically relevant cross-links identified, that result from the use of two mass-spectrometry-cleavable cross-linkers [disuccinimido sulfoxide (DSSO) and disuccinimido dibutyric urea (DSBU)], two fragmentation approaches [collision-induced dissociation and electron-transfer dissociation (CID+ETD)] and stepped high-energy collision dissociation (HCD)], and two programs (MeroX and XlinkX). We also show that there are specific combinations of XL/MS methods that are more successful than others for the two proteins investigated here; these are explored in detail in the text. Data are available via ProteomeXchange with identifier PXD008348
Cross-linking Mass Spectrometry Analysis of the Yeast Nucleus Reveals Extensive Protein-Protein Interactions Not Detected by Systematic Two-Hybrid or Affinity Purification-Mass Spectrometry
Saccharomyces cerevisiae has the most comprehensively characterized protein-protein interaction network, or interactome, of any eukaryote. This has predominantly been generated through multiple, systematic studies of protein-protein interactions by two-hybrid techniques and of affinity-purified protein complexes. A pressing question is to understand how large-scale cross-linking mass spectrometry (XL-MS) can confirm and extend this interactome. Here, intact yeast nuclei were subject to cross-linking with disuccinimidyl sulfoxide (DSSO) and analyzed using hybrid MS2-MS3 methods. XlinkX identified a total of 2,052 unique residue pair cross-links at 1% FDR. Intraprotein cross-links were found to provide extensive structural constraint data, with almost all intralinks that mapped to known structures and slightly fewer of those mapping to homology models being within 30 Ă
. Intralinks provided structural information for a further 366 proteins. A method for optimizing interprotein cross-link score cut-offs was developed, through use of extensive known yeast interactions. Its application led to a high confidence, yeast nuclear interactome. Strikingly, almost half of the interactions were not previously detected by two-hybrid or AP-MS techniques. Multiple lines of evidence existed for many such interactions, whether through literature or ortholog interaction data, through multiple unique interlinks between proteins, and/or through replicates. We conclude that XL-MS is a powerful means to measure interactions, that complements two-hybrid and affinity-purification techniques
Recommended from our members
Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response
To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia-telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility