1,937 research outputs found
Identifying landslides from continuous seismic surface waves: a case study of multiple small-scale landslides triggered by Typhoon Talas, 2011
Landslides can cause devastating damage. In particular, heavy rainfall-triggered landslides pose a chain of natural hazards. However, such events are often difficult to detect, leaving the physical processes poorly understood. Here we apply a novel surface-wave detector to detect and locate landslides during the transit of Typhoon Talas 2011. We identify multiple landslides triggered by Typhoon Talas, including a landslide in the Tenryu Ward, Shizuoka prefecture, Japan, ∼400 km east from the typhoon track. The Tenryu landslide displaced a total volume of 1.2 − −1.5 × 106 m. The landslide is much smaller than those detected by using globally recorded surface waves, yet the event generated coherent seismic signals propagating up to 3000 km away. Our observations show that attributes of small and large landslides may follow the same empirical scaling relationships, indicating possible invariant failure mechanisms. Our results also suggest an alerting technology to detect and locate landslides with a sparse seismic network
The association between blood glucose and oxidized lipoprotein(a) in healthy young women
<p>Abstract</p> <p>Background</p> <p>Oxidized lipoproteins play important roles in the atherosclerotic processes. Oxidized lipoprotein(a) (oxLp(a)) may be more potent in atherosclerotic pathophysiology than native Lp(a), a cardiovascular disease-relevant lipoprotein. Increased blood glucose concentrations can induce oxidative modification of lipoproteins. The aim of this study was to investigate the association between circulating oxLp(a) and cardiometabolic variables including blood glucose in healthy volunteers within the normal range of blood glucose.</p> <p>Methods</p> <p>Several cardiometabolic variables and serum oxLp(a) (using an ELISA system) were measured among 70 healthy females (mean age, 22 years).</p> <p>Results</p> <p>Lp(a) and glucose were significantly and positively correlated with oxLp(a) in simple correlation test. Furthermore, a multiple linear regression analysis showed oxLp(a) to have a weakly, but significantly positive and independent correlation with only blood glucose (<it>β </it>= 0.269, <it>P </it>< 0.05).</p> <p>Conclusions</p> <p>These results suggest that increased glucose may enhance the oxidization of Lp(a) even at normal glucose levels.</p
Supersymmetric BCS
We implement relativistic BCS superconductivity in N=1 supersymmetric field
theories with a U(1)_R symmetry. The simplest model contains two chiral
superfields with a Kahler potential modified by quartic terms. We study the
phase diagram of the gap as a function of the temperature and the specific
heat. The superconducting phase transition turns out to be first order, due to
the scalar contribution to the one-loop potential. By virtue of supersymmetry,
the critical curves depend logarithmically with the UV cutoff, rather than
quadratically as in standard BCS theory. We comment on the difficulties in
having fermion condensates when the chemical potential is instead coupled to a
baryonic U(1)_B current. We also discuss supersymmetric models of BCS with
canonical Kahler potential constructed by "integrating-in" chiral superfields.Comment: 26 pages, 5 figure
Weak coupling large-N transitions at finite baryon density
We study thermodynamics of free SU(N) gauge theory with a large number of
colours and flavours on a three-sphere, in the presence of a baryon number
chemical potential. Reducing the system to a holomorphic large-N matrix
integral, paying specific attention to theories with scalar flavours (squarks),
we identify novel third-order deconfining phase transitions as a function of
the chemical potential. These transitions in the complex large-N saddle point
configurations are interpreted as "melting" of baryons into (s)quarks. They are
triggered by the exponentially large (~ exp(N)) degeneracy of light baryon-like
states, which include ordinary baryons, adjoint-baryons and baryons made from
different spherical harmonics of flavour fields on the three-sphere. The phase
diagram of theories with scalar flavours terminates at a phase boundary where
baryon number diverges, representing the onset of Bose condensation of squarks.Comment: 38 pages, 7 figure
Holographic Roberge-Weiss Transitions
We investigate N=4 SYM coupled to fundamental flavours at nonzero imaginary
quark chemical potential in the strong coupling and large N limit, using
gauge/gravity duality applied to the D3-D7 system, treating flavours in the
probe approximation. The interplay between Z(N) symmetry and the imaginary
chemical potential yields a series of first-order Roberge-Weiss transitions. An
additional thermal transition separates phases where quarks are bound/unbound
into mesons. This results in a set of Roberge-Weiss endpoints: we establish
that these are triple points, determine the Roberge-Weiss temperature, give the
curvature of the phase boundaries and confirm that the theory is analytic in
mu^2 when mu^2~0.Comment: 37 pages, 13 figures; minor comments added, to appear in JHE
Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis
Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion
In order to understand thermodynamical properties of N D-branes with chemical
potentials associated with R-symmetry charges, we study a one dimensional large
N gauge theory (bosonic BFSS type model) as a first step. This model is
obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills
theory and we use a 1/D expansion to investigate the phase structure. We find
three phases in the \mu-T plane. We also show that all the adjoint scalars
condense at large D and obtain a mass dynamically. This dynamical mass protects
our model from the usual perturbative instability of massless scalars in a
non-zero chemical potential. We find that the system is at least meta-stable
for arbitrary large values of the chemical potentials in D \to \infty limit. We
also explore the existence of similar condensation in higher dimensional gauge
theories in a high temperature limit. In 2 and 3 dimensions, the condensation
always happens as in one dimensional case. On the other hand, if the dimension
is higher than 4, there is a critical chemical potential and the condensation
happens only if the chemical potentials are below it.Comment: 37 pages, 4 figures; v2: minor corrections, references added; v3:
minor corrections, to appear in JHE
Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study
Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from < 0.4 μg/L to 6.7 μg/L; uncorrected geometric mean was 1.52 μg/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p < 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (< 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe
Superconducting instabilities of R-charged black branes
We explore superconducting instabilities of black branes in SO(6) gauged
supergravity at finite temperature and finite R-charge densities. We compute
the critical temperatures for homogeneous neutral and superconducting
instabilities in a truncation of 20 scalars and 15 gauge fields as a function
of the chemical potentials conjugate to the three U(1) charges in SO(6). We
find that despite the imbalance provided by multiple chemical potentials there
is always at least one superconducting black brane branch, emerging at a
temperature where the normal phase is locally thermodynamically stable. We
emphasise that the three-equal charge solution, Reissner-Nordstrom, is
subdominant to a thermodynamically unstable black brane at sufficiently low
temperatures --- a feature which is hidden in an equal charge truncation.Comment: 23 pages, 6 figure
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
- …