10 research outputs found

    Anti-cyanobacterial activity of Moringa oleifera seeds

    Get PDF
    Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 µg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance

    Preparation of the Low Molecular Weight Serum Proteome for Mass Spectrometry Analysis.

    No full text
    The ability to cure or manage many diseases is highly dependent on the ability to correctly diagnose them at the earliest possible stage. Diagnosis relies heavily on biomarkers whether these be visual symptoms or molecules found within samples acquired from the patient. For conditions that lack useful biomarkers, researchers are often faced with the task of sifting through very complex biological samples (i.e., serum, plasma, urine, tissue, cells, etc.) with the hope of discovering a small number of molecules that are exquisitely diagnostic for the condition of interest. One discovery strategy that has been frequently used is to fractionate the biological samples being studied into simpler aliquots that can be more easily characterized using existing technologies. One such fractionation method is to isolate a specific portion based on a specific property (i.e., size, phosphorylation state, charge, etc.) of the proteins within the sample. This method provides a simplified sample that can be characterized at a higher coverage level than the complex sample from which it was derived. This chapter details one of these methods, the extraction and analysis of the low molecular weight proteome of human serum
    corecore