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Abstract

Introduction The generic metabolomics data processing

workflow is constructed with a serial set of processes

including peak picking, quality assurance, normalisation,

missing value imputation, transformation and scaling. The

combination of these processes should present the experi-

mental data in an appropriate structure so to identify the

biological changes in a valid and robust manner.

Objectives Currently, different researchers apply differ-

ent data processing methods and no assessment of the

permutations applied to UHPLC-MS datasets has been

published. Here we wish to define the most appropriate

data processing workflow.

Methods We assess the influence of normalisation,

missing value imputation, transformation and scaling

methods on univariate and multivariate analysis of

UHPLC-MS datasets acquired for different mammalian

samples.

Results Our studies have shown that once data are fil-

tered, missing values are not correlated with m/z, retention

time or response. Following an exhaustive evaluation, we

recommend PQN normalisation with no missing value

imputation and no transformation or scaling for univariate

analysis. For PCA we recommend applying PQN normal-

isation with Random Forest missing value imputation, glog

transformation and no scaling method. For PLS-DA we

recommend PQN normalisation, KNN as the missing value

imputation method, generalised logarithm transformation

and no scaling. These recommendations are based on

searching for the biologically important metabolite features

independent of their measured abundance.

Conclusion The appropriate choice of normalisation,

missing value imputation, transformation and scaling

methods differs depending on the data analysis method and

the choice of method is essential to maximise the biolog-

ical derivations from UHPLC-MS datasets.

Keywords UHPLC-MS � Metabolomics � Random
forest � KNN � PQN normalisation � Glog transformation

1 Introduction

The application of Ultra High Performance Liquid Chro-

matography-Mass Spectrometry (UHPLC-MS) to acquire

non-targeted metabolomics data is increasing in fre-

quency. In 2014, there were 507 published papers in the

12 month period applying this instrumental platform as

defined in PubMed compared to 12 and 179 in 2005

and 2010, respectively (search terms present in all

fields = ‘metabolomics’ and ‘liquid chromatography’ and
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‘mass spectrometry’). Following the acquisition of three-

dimensional raw data (m/z vs. retention time vs. response),

the first process to convert this raw data to biological

knowledge is peak picking (or deconvolution) to align and

integrate data across multiple samples. Software such as

XCMS (Smith et al. 2006) and mzMine (Katajamaa et al.

2006) are freely available and commonly applied. The

resulting data matrix is typically constructed with thou-

sands of ‘metabolite features’ (m/z-retention time pairs)

and tens-to-thousands of samples. Prior to univariate and

multivariate data analysis this data matrix typically

undergoes a number of processes including quality control

(Dunn et al. 2011), missing value imputation, normalisa-

tion, scaling and transformation; here we will define this

as ‘data processing’ and the processes applied can follow

a specific workflow dependent on a number of factors

including the structure of the data acquired and the sub-

sequent data analysis techniques applied. A range of

tools [e.g. MetaboAnalyst (http://www.metaboanalyst.ca/)],

workflows [e.g. Galaxy-M (https://github.com/Viant-Meta

bolomics/Galaxy-M; Davidson et al. 2016) and Work-

flow4Metabolomics (Giacomoni et al. 2015)] and R

packages [e.g. mixOmics; http://mixomics.qfab.org] are

available to perform data processing. A random selection

of 51 papers (10 % of all papers) published in this area in

2014 was investigated to define the different processing

methods applied; SI1 lists the methods applied for nor-

malisation, missing value imputation, data transformation

and scaling. It is clearly evident that no single processing

workflow is applied across the metabolomics community.

Interestingly, a number of papers do not even define which

processing methods were applied.

Variation in the measured response unrelated to the

biological differences between samples can be observed in

studies analysing tens-to-thousands of samples. These

sources of variation include small changes in volume

applied during sample preparation and sample injection

and in instrument performance (changes in ionisation, ion

transfer and detector efficiency). Normalisation is applied

to correct for these unwanted peak intensity differences and

to stabilise the variance within the dataset. Normalisation

can be performed with or without applying an internal

standard as a reference to calculate observed analytical

errors. Normalization methods that are not based on

internal standards often apply the sum, mean or the median

of the responses of all metabolites across a sample as a

normalization factor (Xia and Wishart 2011; Martucci et al.

2014; Kohl et al. 2012). However, some of these approa-

ches (sum and mean) can introduce artificial correlations in

the data in the case of large differences between the groups

of samples in one or a few metabolites (Dieterle et al. 2006;

Li et al. 2015). Probabilistic quotient normalisation (PQN)

(Dieterle et al. 2006) was developed to reduce this effect

and has successfully been applied for normalization in

many metabolomics studies (Hrydziuszko and Viant 2012;

Davies et al. 2014; Cottet et al. 2014). Different methods

applying internal standards have been developed (De

Livera et al. 2012). Other methods applying internal stan-

dards for UHPLC-MS (Sysi-Aho et al. 2007; Waybright

et al. 2006) and GC–MS (Dunn et al. 2008b; Biais et al.

2009) for different biological samples have been investi-

gated and reported.

Missing values in metabolomics datasets can be observed

for three reasons: (1) metabolite is detected in one sample but

is not present at any concentration in another sample; (2)

metabolite is present in a sample but at a concentration less

than the analytical method’s limit of detection, and (3)

metabolite is present in a sample at a concentration greater

than the analytical method’s limit of detection but the data

processing software has not detected and reported the

metabolite. Some software apply gap filling algorithms

(Scheltema et al. 2011; Pluskal et al. 2010) though the

majority of software do not apply these algorithms, including

XCMS which is predominantly applied by the metabolomics

community (in the period between April 2015 and March

2016 the package XCMSwas downloaded 20,798 times from

6469 different IPs (https://bioconductor.org/packages/stats/

bioc/xcms.html). Missing value imputation (MVI) is applied

to logically replace missing values with a non-zero value

while maintaining the data structure. This approach is pri-

marily applied in multivariate analysis which typically oper-

ates most robustly with a dataset not containing missing

values, though one example where missing values can be

present is Bayesian PCA where missing value imputation is

performed as part of the algorithm. Rubin identified three

types of missing value occurrences (Rubin 1976): data can be

missing completely at random (MCAR) when the missing-

ness is unrelated to any observedvariable or response,missing

at random (MAR) when the missing-ness is related to one or

more observed variables but not to the response, and missing

not at random (MNAR)when themissing-ness is related to the

response itself. Therefore the distribution of missing values

can be random or systematic and in both cases the cause may

be biological or technical (Little 1998;Hrydziuszko andViant

2012). For example, if one class of samples does not contain a

metabolite that is present in another class of samples, the

missing values in the dataset aremost probably occurring for a

biological reason and can be defined asMNAR. However, if a

metabolitewhich is present in the sample is not detected in the

majority of or all samples then this ismost probably a result of

the metabolite concentration being lower than the analytical

methods’ limit of detection; themissing values are a result of a

combination of biological and technical issues and therefore

themissing value can be accounted asMNAR.Another source

of missing values caused by technical reasons are errors

associated with peak picking software where the peak is
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present but the peakobserved in the rawdata is not reported, in

this case the missing value can be accounted as MCAR.

A number of different missing value imputation (MVI)

methods are available. These include small value replace-

ment (SV) (Xia and Wishart 2011), mean replacement (MN)

(Steuer et al. 2007), median replacement (MD) (Steuer et al.

2007), k-nearest neighbour (KNN) (Steuer et al. 2007;

Troyanskaya et al. 2001), Bayesian PCA (BPCA) (Nya-

mundanda et al. 2010; Xia and Wishart 2011), multivariate

imputation by chained equation MICE (van Buuren and

Groothuis-Oudshoorn 2011) and Sangster’s method (Sang-

ster et al. 2007). As the missing value imputation affects all

of the following steps of the data processing and analysis

pipeline it is extremely useful to identify the most appropriate

method to apply in order to obtain the most robust results.

Hrydziuszko and Viant (2012) have compared different

commonly used missing value imputation methods for direct

infusion Fourier transform ion cyclotron resonance mass

spectrometry (DI FTICR-MS). Similarity between outcomes

produced by different missing value imputation methods and

imputation performance were evaluated and the results

showed that KNN was the most robust missing value

imputation method for DIMS metabolomics data. Gromski

et al. (2014) published a study which explored the effects of

different MVI methods on GC–MS datasets, evaluating their

impact on classification performance in unsupervised and

supervised multivariate models. That study concluded that

Random Forest (RF) should be favoured as a MVI method.

The application of MVI has also been investigated in tran-

scriptomics and proteomics. Troyanskaya et al.(2001)

examined the impact of missing values on statistical

parameter evaluation for genomics, while the effect of the

handling of missing values on univariate and multivariate

statistics was studied by Scheel et al.(2005) for genomics and

Pedreschi et al.(2008) for proteomics. While the first study

recommended the use of an in-house package for MVI in

transcriptomics, the second concluded that BPCA was the

most efficient method for proteomics. A detailed investiga-

tion of how missing value imputation methods influence LC–

MS metabolomics datasets and corresponding data analysis

results has not been published to our knowledge.

Element-wise transformations of the data are carried out

to correct for any data heteroscedasticity and any skewed

distribution that is present. Transformation methods most

frequently applied include logarithmic modifications [gen-

eralised logarithm (glog) or natural logarithm (nlog)] (Yau

et al. 2014; Lopez-Sanchez et al. 2015; van der Kloet et al.

2013), often adding a constant value to the argument in

order to cope with near-zero values (Mak et al. 2014).

Scaling is performed to adjust for differences in fold change

between metabolites which may be caused by large differ-

ences in the variation of the measured responses; however,

the use of a scaling factor reduces such large differences to a

relative value which is not dependant on the absolute

abundance. A range of scaling methods has been applied in

metabolomics including autoscaling (Jackson 1991), Pareto

scaling (Eriksson et al. 1999), range scaling (Smilde et al.

2005) and VAST scaling (Keun et al. 2003). Different

scaling and transformation methods have been assessed for

GC–MS datasets (van den Berg et al. 2006) and a compar-

ison between autoscaling and Pareto scaling has been per-

formed for a single UHPLC-MS dataset (Masson et al.

2011). These studies concluded that autoscaling and range

scaling were the most appropriate scaling method to apply in

GC–MS metabolomics recommending these methods when

metabolite abundance and fold change are not expected to

influence the statistical multivariate model.

A number of papers investigating different data pro-

cessing procedures have been published. Bijlsma et al.

(2006) assessed different scaling, univariate analysis and

multivariate analysis procedures in order to identify lipi-

domic biomarkers applying LC–MS. All data were nor-

malised by reference to an internal standard as the only

method assessed and only two scaling methods were tested

(autoscaling and mean centering). The study produced a

reproducible workflow for PLS-DA validation in order to

detect low abundance biomarkers.

As detailed above a range of different data processing

methods are applied but no systematic assessment of the

integrated application of each of these methods has been

published for UHPLC-MS metabolomics datasets. Here we

assess different data processing methods, both singularly and

combined, to define the data processing methods that are

optimal for univariate (Mann–Whitney U test) and multi-

variate analysis (PCA, PLS-DA) methods and identify those

data processingmethods that are not appropriate for providing

robust biological knowledge fromUHPLC-MS data acquired

for serum/plasma. We will define the impact of different data

processing methods and formulate an appropriate ‘fit-for-

purpose’ data processingworkflow from these data. Itmust be

noted that this approach does not deal with classification

performance as studies dealing with the effect of different

scaling procedures on classification performance has already

been published (for example see Yang et al. 2015).

2 Methods

2.1 Data sets and raw data processing

2.1.1 Missing value imputation study

Four different non-targeted UHPLC-MS metabolomics

datasets were employed to assess six different missing

value imputation methods.
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2.1.1.1 Datasets

(1) Mouse serum from a study of ischemia following

stroke acquired in negative ion centroid mode. The

dataset consisted of 34 samples divided into five

different classes and reported 4435 metabolite fea-

tures. The m/z range was 100–1000 and the data

were acquired applying a UHPLC Accela system

coupled to an electrospray LTQ-Orbitrap Velos mass

spectrometer (Thermo Scientific, UK) applying a

method as previously described (Dunn et al. 2011).

(2) Placental tissue extract from a study of normal and

pre-eclamptic pregnancy as published previously

(Dunn et al. 2012). Data for 24 samples were

acquired in negative ion centroid mode with 3412

metabolite features. The m/z range was 100–1000

and data were acquired on a UHPLC-MS system

(Waters Acquity UHPLC system and Thermo Sci-

entific LTQ-Orbitrap XL).

(3) Human urine samples; these data are currently not

published. The dataset consisted of 48 samples

acquired in positive ion profile mode with 3823

metabolite features. The m/z range was 100–1000

and data were acquired on a UHPLC-MS system

(Thermo Scientific Dionex Ultimate 3000 UHPLC

system and Thermo Scientific Q-Exactive).

(4) Mammalian cellular extracts dataset; these data are

currently not published. The dataset consisted of 88

fibroblast samples acquired in positive ion profile

mode with 2008 metabolite features. The m/z range

was 100–1000 and data were acquired on a UHPLC-

MS system (Thermo Scientific Dionex Ultimate

3000 UHPLC system and Thermo Scientific

Q-Exactive).

2.1.1.2 XCMS processing The .RAW files produced were

converted to .mzML format applying ProteoWizard 2.1

(Kessner et al. 2008) followed by deconvolution and peak

alignment applying XCMS applying a previously described

method (Dunn et al. 2008a).

2.1.1.3 Metabolite feature filtering Firstly, missing value

imputation was performed for each feature that was not

detected in a single class but was detected in other classes.

Applying R, the missing values in the single class were

replaced by a value defined as the minimum peak area

reported in the data matrix multipled by 0.5. Subsequently,

features or samples containing more than 20 % missing

values across all classes were deleted (peak filtering).

2.1.1.4 Missing Value Imputation methods Normalisa-

tion by sum for each sample was applied (see

Sect. 2.1.2.3). Five different missing value imputation

methods were assessed:

(1) Small value replacement (SV): for every metabolite

feature the missing values were replaced by a value

half of the minimum peak intensity of the entire

dataset (Xia and Wishart 2011).

(2) Mean replacement (MN): for every metabolite

feature the missing values were replaced by the

mean of the specific metabolite across all samples

(Xia and Wishart 2011) (excluding the missing

values in the calculation).

(3) Median replacement (MD): for every metabolite

feature the missing values were replaced by the

median of the specific metabolite across all samples

(Xia and Wishart 2011) (excluding the missing

values in the calculation).

(4) K-nearest neighbour imputation (KNN): the missing

values are replaced by the average of the corre-

sponding (feature specific) non-missing values in the

k (here k = 10) closest features in terms of

Euclidean distance of the responses across all the

samples. Therefore a unique value is imputed for

every missing value in a feature instead of using the

same value multiple times as in approaches 1–3 (Xia

and Wishart 2011; Hrydziuszko and Viant 2012).

(5) Bayesian Principal Component Analysis replace-

ment (BPCA): the missing values are replaced by the

values obtained through principal component anal-

ysis regression with a Bayesian method. Therefore

every imputed missing value does not occur multiple

times neither across the samples nor across the

metabolite features (Hrydziuszko and Viant 2012;

Nyamundanda et al. 2010).

(6) Random Forest imputation (RF): missing values are

iteratively imputed using as a decisional criterion the

proximity matrix generated by a RF classification

computed across the total number of metabolites

(Breiman 2001).

All the computations were performed using built-in R

3.0.2 functions except KNN which was performed using the

package ‘‘impute’’, BPCA which was performed using the

package ‘‘pcaMethods’’(Stacklies et al. 2007) and RF which

was performed using the package ‘‘missForest’’. ‘‘impute’’

and ‘‘pcaMethod’’ packages are freely available in Biocon-

ductor (http://www.bioconductor.org/) while ‘‘missForest’’

is downloadable from the CRAN repository (https://cran.r-

project.org/). Multivariate imputation by chained equation

was not tested since it resulted in a computationally intense

method while Sangster’s method was not performed due to

lack of technical replicates, which is a common occurrence

in non-targeted metabolomics studies.
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2.1.1.5 Assessment of different MVI methods In order to

assess the performance of the different imputation methods

each of the datasets described in Sect. 2.1.1.1 was treated

as follows: only metabolite features (m/z-retention time

pairs) with no missing values were retained; next a series of

feature intensities in this data matrix were randomly

selected, their intensities re-classified as ‘missing values’,

until reaching a missing value frequency in the dataset of

10 %. Data were simulated as missing completely at ran-

dom (MCAR) because the Pearson correlation coefficients

did not show any relationship between m/z, response,

retention time and frequency of missing values. Next,

comparison of the original matrix (with no missing values)

to the modified matrix (with randomly introduced missing

values)—for each of the four datasets investigated—was

performed applying normalised root mean squared error

(NRMSE) for every imputation method. The root mean

squared error was calculated on the difference between

original and imputed values and normalised by the mean

value of the matrix.

2.1.1.6 Calculation of Pearson correlation coefficients For

each metabolite feature the m/z, retention time, mean

response and number of missing values were calculated.

Pearson correlation coefficients were calculated for (i) m/z

vs. number of missing values; (ii) retention time vs. number

of missing values, and (iii) mean response vs. number of

missing values.

2.1.2 Data processing study

2.1.2.1 Dataset A single UHPLC-MS dataset was used

to assess the effect of different combinations of processing

methods in relation to response and fold change. Human

serum was acquired in positive ion mode for 64 samples

(46 biological samples and 18 QC samples). The total

number of detected metabolite features was 3837. The m/z

range applied was 100-1000 and the data were acquired on

a Ultimate3000 UHPLC system coupled to a LTQ-FT Ultra

mass spectrometer (Thermo Scientific, UK). Data were

processed applying XCMS as defined in Sect. 2.1.1.2.

2.1.2.2 Construction of modified dataset We artificially

modified peak intensities to introduce known metabolic

differences between groups and this provided us with a

target for discovering these artificial peak intensities using

both univariate and multivariate statistics. The effects of

the processing steps on our ability to re-discover these

known metabolic differences were evaluated. The 46 bio-

logical samples were randomised into two classes with the

median fold change between class A and class B in the

range 0.8–1.2. Mann–Whitney U test defined no metabolite

features that were statistically significant (p\ 0.05). All

metabolite features were separated into three blocks based

on response (the mean response was calculated across all

features, the vector of the means was then ordered and split

into three sections with each section defined as 0–33 %

(low), 34–66 % (medium) and 67–100 % (high) of the

range of means). Thirty-two metabolite features in class A

were randomly chosen (applying sample() random function

in R) from each of the three blocks and multiplied by a

factor between 0.1 and 10 (0.1 to 2.0 in steps of 0.1 and

from 2.5 to 10.0 in steps of 0.5). This modified dataset was

applied for comparison of different processing methods. A

flow chart is available in SI2.

2.1.2.3 Normalisation methods The modified dataset was

normalised by sum or PQN.

• Normalisation by sum: each value in a row (sample) is

divided by the total sum of the row (sample) and

multiplied by 100; the unit is %.

• PQN: for every feature the mean response is calculated

across all QC samples. A reference vector is then

generated. The median between the reference vector

and every sample is computed obtaining a vector of

coefficients related to each sample. Each sample is then

divided by the median value of the vector of coeffi-

cients; this median value is different for each sample.

This method was adapted by Dieterle et al. (2006). Its

purpose is to take into account the concentration

changes of some metabolite features that affect limited

regions of the data.

Other normalisation methods requiring internal stan-

dards or technical replicates were not investigated because

the analytical samples contained no internal standard and

technical replicates were not acquired.

2.1.2.4 Missing Value Imputation methods Six missing

value imputation methods were assessed as defined in

Sect. 2.1.1.4.

2.1.2.5 Transformation methods Three different trans-

formation methods (van den Berg et al. 2006) were

assessed:

• Generalised logarithm (glog) (Parsons et al. 2007):

every value is transformed according to the equation

z ¼ ln yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ k
p

� �

where y is the untransformed value, z is the trans-

formed value and k is a parameter which is iteratively

computed (from a series of technical replicates, in this

case QC samples) in order to minimise the variation;
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• Natural logarithm (nlog): every value is transformed in

the corresponding natural logarithm;

• Inverse hyperbolic sine (IHS)(Mak et al. 2014): every

value is transformed according to the equation:

z ¼ lnðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 1Þ
p

� �

2.1.2.6 Scaling methods Four different (peak-wise)

scaling approaches were assessed:

• Autoscaling: every peak is mean centered and divided

by the standard deviation of the column. This treatment

makes the standard deviation of each metabolite equal

to 1. Autoscaling, along with range scaling, is not

affected by the feature abundance (Jackson 1991).

• Pareto scaling: every peak is mean centered and divided

by the square root of the standard deviation of the

column (Eriksson et al. 1999). The influence of noise

variables on the multivariate model is reduced com-

pared to autoscaling.

• Range scaling: every peak is mean centered and divided

by the numerical difference between the maximum and

minimum values of the column (Smilde et al. 2005).

• Vast scaling: every peak is autoscaled and divided by

the coefficient of variation. It is particularly suited for

metabolites bearing small fold changes (Keun et al.

2003).

All processing was carried out using built-in R 3.0.2

functions. The source code for many of the steps applied

can be found in the Galaxy-M repository https://github.

com/Viant-Metabolomics/Galaxy-M. All possible permu-

tations of normalisation, missing values imputation, trans-

formation and scaling (see SI3) were explored and applied

on the modified dataset described.

2.1.2.7 Univariate and multivariate data analysis The

Shapiro–Wilk test of normality was applied for all

metabolite features to assess whether the data were nor-

mally distributed (the null hypothesis is that the distribu-

tion does not differ from a normal distribution; p\ 0.05

defines that the distribution is not normal). This was per-

formed on data before any normalisation, MVI, scaling and

transformation and after normalisation, MVI, scaling and

transformation.

Univariate analysis was performed applying the Mann–

Whitney U test and Students t test (non-parametric and

parametric, respectively) between class A and class B. Data

for QC samples were removed from the datasets prior to

univariate analysis. The Benjamini–Hochberg (Benjamini

and Hochberg 1995) false discovery correction for multiple

comparisons was applied afterwards.

Multivariate analysis was performed applying Principal

Component Analysis (PCA) and Partial Least Squares-

Discriminant Analysis (PLS-DA), QC samples were

excluded from the analysis prior to PLS-DA analysis. The

R packages mixOmics and pcaMethods were used for this

purpose. Further statistical analysis consisted of t-test or

Mann-Whitney U-test performed on the PCA scores in

order to identify statistically significant clustering patterns.

Prior to these procedures a Shapiro–Wilk test was carried

out to assess the normality of the score matrix in order to

apply parametric or non-parametric statistics. For PLS-DA,

the classification performance was identified through the

application of cross-validation and calculation of R2 and Q2

values. The optimal number of components was evaluated

applying a tenfold cross validation.

Analysis of the univariate outcome The Mann–Whitney

U-test and t-test between class A and B were calculated for

each combination of normalisation, missing value impu-

tation, transformation and scaling methods (a total of 280

permutations). The total number of significant peaks

(q\ 0.05) and the number of the 96 metabolite features

(with deliberately modified intensities) showing statistical

significance were both reported. The number of false pos-

itive statistically significant metabolite features was cal-

culated by subtracting the number of intensity-modified

significant peaks from the total number of significant

peaks. Here, by ‘‘false positive’’, we indicate peaks that

were incorrectly marked as significantly different; the

intensities of these peaks were not altered, hence bearing a

fold change between classes in the range 0.8 and 1.2 and

not being statistically significant in the original dataset.

Analysis of the multivariate outcome Following PCA

and PLS-DA analysis all the metabolite features that were

intensity-modified were ranked according to their absolute

loading value on PC1, PC2 and a combination of PC1 and

PC2, and on latent variable 1, latent variable 2 and a

combination of both for PLS-DA. The range of ranks was

reported for the top ten highest ranked metabolite features.

The permutations (the 280 different combinations of

normalisation, MVI, scaling and transformation) were

sorted including the entries having a fold change effect and

lacking an abundance effect in PC1 and PC2. These entries

were sorted according to the p-value (low to high) pro-

duced by the PC1 score plot separation between classes and

according to the % variance contribution for PC1 ? PC2

as a second level. For PLS-DA the permutations were

sorted by R2 value (high to low) and differences between

R2 and Q2 of less than 0.20 (low to high).
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3 Results and discussion

3.1 Missing value imputation study

The percentage of missing values was calculated and an

assessment to determine whether missing values were

correlated with m/z, retention time or response was per-

formed for four different datasets (mouse serum, human

urine, placental tissue, mammalian cell extract) acquired

applying two different analytical methods (reversed phase

and HILIC) and three different UHPLC-MS platforms

(Accela UHPLC coupled to LTQ-Orbitrap Velos, Ulti-

mate3000 coupled to LTQ-FT Ultra, and Ultimate3000

coupled to Q Exactive). Table 1 defines the percentage

missing values and Pearson correlation coefficients for

each dataset. In this paper we define a metabolite feature as

a m/z-retention time pair with a single metabolite typically

being detected as more than one metabolite feature.

The percentage of missing values ranged from 8.7 to

15.0 % before filtering and 2.8 to 5.0 % after filtering. A

relatively strict filter was applied, where any metabolite

feature with[20 % missing values was removed from the

dataset. Correlations between m/z and the number of

missing values, retention time and the number of missing

values, and intensity and the number of missing values

were close to zero. These results show that the number of

missing values is not correlated with m/z, retention time or

response across the complete data for each dataset. The

structure of missing values in relation to m/z, retention time

or response is shown in SI4. For two of four datasets

(mammalian cell extract and placental tissue) some struc-

ture is observed when investigating missing values and

retention time. Here a lack of missing values is observed

around 150–250 s, though the number of metabolite fea-

tures detected in this retention time range is lower than in

any other 100 s range. We therefore assume that missing

values occur at random across the dataset and are primarily

a result of peak picking software not reporting metabolite

peaks; i.e. the peaks are missing because of the genuine

absence of metabolites or because they are present but at a

concentration lower than the analytical method’s limit of

detection.

To assess six different MVI methods (SV, MN, MD,

KNN, BPCA and RF) the four datasets discussed above

were filtered to remove metabolite features which con-

tained one or more missing value. Missing values were

then randomly introduced into each of the datasets to a

frequency of 10 %. This frequency of 10 % was chosen as

it was equivalent to the highest missing value frequency in

six further datasets collected with different instrument

manufacturers (4 datasets collected on Agilent Q-TOF

systems and 2 datasets collected on Waters Q-TOF sys-

tems) which presented a distribution of missing values after

peak filtering of 2.3–10.5 %. These datasets are detailed in

SI5. The same range for the four datasets discussed above

was 2.8–5.0 %. The similarity between the original matrix

with no missing values and the modified matrix containing

imputed missing values was calculated applying nor-

malised root mean squared error (NRMSE) for each of the

six missing value imputation methods. The results are

shown in Table 2.

The results show that small value replacement, with the

largest NRMSE values, is the least optimal method for

missing value imputation. This is expected as small value

imputation would be expected to work when missing val-

ues are related to low responses; however Pearson corre-

lation analysis showed no correlation between response and

missing values. RF achieved the lowest NRMSE values in

all four datasets with marked improvement compared to all

the other imputation methods. KNN and BPCA also per-

formed quite well with KNN slightly out performing BPCA

for placental tissue and mammalian cell extracts datasets

while BPCA performing similarly to KNN in mouse serum

and human urine datasets. Overall, RF seems to be the best

imputation method in all cases tested. The major drawback

of RF is the computational time which was typically

Table 1 Summary of the percentage of missing values present in four datasets and the correlation of missing values observed with m/z, retention

time and response

Dataset Mouse serum Placental tissue Human urine Mammalian cell extract

Metabolite features before filtering 4435 3412 3823 2008

Missing values before filtering (%) 15.0 10.2 14.0 8.7

Metabolite features after filtering 2996 2622 2684 1598

Missing values after filtering (%) 4.5 2.8 5.0 3.7

Pearson coefficient (missing values vs. mean abundance) -0.05 -0.12 -0.05 -0.08

Pearson coefficient (missing values vs. m/z values) 0.07 -0.02 0.30 0.35

Pearson coefficient (missing values vs. retention time) 0.02 -0.11 0.03 -0.07

Filtering was performed as defined in Sect. 2.1.1.3
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greater than 15 min in the study reported here. KNN and

BPCA, despite achieving a worse performance compared

to RF require considerably faster computation times. The

use of MN and MD showed comparable results for pla-

cental tissue and mammalian cell extract datasets while

they tended to be less efficient in the mouse serum and

human urine datasets. Conclusively, it is recommended that

RF is applied for missing value imputation for multivariate

analysis, consistent with the finding for GC–MS metabo-

lomics data (Gromski et al. 2014). We do not recommend

the use of MVI for univariate analysis because of the

potential to change the distribution within each class. Even

though RF provided the smallest NRMSE, the values were

not zero and therefore indicative of a ‘perfect’ missing

value algorithm.

3.2 Data processing study

A sample set containing 46 biological samples analysed in

positive ion mode applying UHPLC–MS was randomised

into two classes containing 22 (class A) and 24 samples

(class B); the R function applied does not provide the same

number of samples in each class. Univariate and multi-

variate analysis was performed prior to any dataset modi-

fication. The Mann–Whitney U-test did not identify any

statistically significant peaks (p\ 0.05) and PCA reported

the samples as randomly scattered across the scores plot for

PC1-3 (data not shown). PLS-DA did not report a cross-

validated model. These results show that no separation of

classes A and B was observed before the dataset was

modified (data not shown).

After all metabolite features were ranked according to

response and grouped into three classes (low, medium and

high response), 32 metabolite features in each class were

randomly chosen. For each class the metabolite features

were randomised into a rank order and then the response

was multiplied by a factor between 0.1 and 10. Following

this process there were 7.8 % of all reported values which

were defined as missing values and 65.3 % of features were

shown to have at least one sample with a missing value.

The normality of the resulting dataset was assessed

applying the Shapiro–Wilk test showing a high percentage

of features not following a normal distribution before and

after log transformation as shown in SI6.

Consequently the modified dataset was analysed apply-

ing non-parametric univariate (Mann–Whitney U test) as

well as multivariate (PCA, PLS-DA) methods following

different permutations of normalisation, missing value

imputation, transformation and scaling methods being

applied. Two normalisation (PQN and SUM), seven miss-

ing value imputation (none, SV, MN, MD, KNN, BPCA

and RF), four transformation (none, glog, ihs, nlog) and

five scaling (none, autoscaling, Pareto scaling, range scal-

ing and Vast scaling) methods were assessed. 280 different

permutations were assessed as shown in SI3.

3.2.1 Univariate analysis

The results for all the permutations are shown in SI7 and a

summary presented in Table 3, where each unique set of

results is shown and where one row can represent multiple

permutations; for example, ‘all’ defines that all of the

methods applied produced the same result. The results

show that no permutation of data processing methods is

ideal, as no method led to 96 true positive (statistically

significant) features and zero false positives. Three per-

mutations provided 81 true positive and zero false positive

results. Two of these applied PQN normalisation and one

SUM normalisation. Interestingly, two permutations

applied RF missing value imputations and one did not

apply any missing value imputation. Although RF missing

value imputation provided the best results in this compar-

ison we still recommend that RF is not applied for uni-

variate analysis. This is because the NRMSE values

reported in 3.1 were not zero (indicative of a ‘perfect’

missing value algorithm) and therefore the data structure is

still altered.

The normalisation method had a minimal effect, with

PQN and SUM reporting 81 and 80 statistically significant

metabolites. KNN and BPCA missing value imputation

Table 2 Normalised root mean squared errors (NRMSE) for four datasets for comparison of six different missing value imputation methods

MVI method Mouse serum Placental tissue Human urine Mammalian cell extract

Small value replacement 9.99 3.64 7.66 5.53

Mean 1.82 0.66 1.47 1.01

Median 1.60 0.68 1.49 1.01

K-nearest neighbours 1.29 0.58 1.44 0.54

Bayesian principal components analysis 1.30 0.62 1.49 1.12

Random forest 0.75 0.45 1.16 0.37

An NRMSE close to zero implies the imputation algorithm has most correctly predicted the missing values
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methods and all scaling methods resulted in false positives

for both normalisation processes and are not fully appro-

priate to apply for univariate analysis. Sixteen and fifteen

metabolites were not reported as statistically significant for

the SUM and PQN normalisation methods. The metabolites

reported as not statistically significant were primarily those

with a fold change in the range 0.8–1.2 for all three

response classes (low, median, high). This shows that the

inter-subject variation in the dataset is greater than the

variation associated with the modifications performed for

these 15 metabolite features. At fold changes less than 0.8

and greater than 1.2 there was no significant effect of fold

change or response on the p-values reported for any

metabolite within a single permutation. Our results show

that the use of SUM or PQN normalisation with no MVI

and no scaling or transformation should be applied for

univariate analysis. It should be noted that SUM normali-

sation cannot deal well with large differences in a few

metabolites in large datasets and so PQN normalisation is

recommended (Kohl et al. 2012). This conclusion should

not be interpreted as a rigid rule, instead it offers guidance

to the user. Indeed the treatment performed for univariate

analysis is heavily affected by the purpose of the study.

The results we report here are somewhat consistent with

the conclusions reported by Hrydziuszko et al.4 for DIMS

data, though this reported study did not assess RF missing

value imputation.

3.2.1.1 Students t test A similar investigation was per-

formed as for Sect. 3.2.1 with the single difference being

the use of the parametric students t test. Many research

groups apply parametric statistical tests and there is a

general assumption that log transformations will convert

data into a normal distribution, which we investigated here.

As defined in SI6, the percentage of metabolite features not

demonstrating a normal distribution with no glog trans-

formation ranged from 39.6 to 41.6 % with glog transfor-

mation reducing the number of metabolite features

showing a non-normal distribution by less than 12 %. In

conclusion, although log transformations increase the

number of features which are normally distributed, the

percentage of features which are not normally distributed is

still high (greater than 50 %). To evaluate the use of the

Students t test and Mann–Whitney U test we applied the

Students t-test and compared the results to those obtained

for the Mann–Whitney U test (see Sect. 3.2.1). The data

applying Students t test are shown in SI8. The manipulated

features which were not statistically significant were again

the ones multiplied by a factor ranging between 0.8 and 1.2

apart from a few exceptions. As a general conclusion, the

same number of true positives and false positives were

reported when applying both the parametric and non-

parametric statistical methods.

3.2.2 Multivariate analysis

3.2.2.1 PCA The dataset was applied to assess all 280

permutations of normalisation, missing value imputation,

transformation and scaling followed by PCA analysis. The

purpose of this study was to identify data processing

methods driven by fold change but not abundance (as is

applied in many but not all metabolomics studies). Indeed

Table 3 Summary of the number of the 96 modified metabolite features defined as statistically significant (q\ 0.05) and the number of

metabolite features falsely reported as statistically significant (q\ 0.05) for all of the different data processing methods applied

Normalisation Missing value imputation Transformation Scaling True positive results False positive results

PQN/SUM RF All All 81 0

PQN None All All 81 0

PQN MN/MD All All 80 0

SUM None All All 80 0

SUM MN/MD/SV All All 79 0

PQN SV All All 77 0

SUM BPCA glog Range/Autoscaling/VAST 81 1

SUM KNN All All 81 3

SUM BPCA All None/Pareto 81 3

PQN KNN All All 82 5

PQN BPCA All All 82 6

All defines that all methods provided the same result. The closer the number of significant modified features to 96 implies the data processing has

performed more ideally

PQN probabilistic quotient normalization, RF random forest, MN mean, MD median; SV small value, KNN k-nearest neighbour, BPCA Bayesian

principal components analysis, glog generalised log

Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation… Page 9 of 14 93

123



such an outcome is desirable since it is rather common for

metabolomics datasets to present the majority of detected

metabolites with relatively low abundance. Here for

example, 2843 features out of 3837 were present in the

25th quartile thus highlighting the potential importance of

low abundance peaks. The results are shown in SI9 and the

top 10 permutations showing (1) separations related to fold

change only; (2) the highest variance observed in

PC1 ? PC2 and (3) the most statistically significant dif-

ferences in PC1 are shown in Table 4. The first ten ranked

permutations all applied RF for missing value imputation

and either SUM or PQN normalisation. The first five

ranked permutations showing the highest statistical sig-

nificance all applied no scaling and applied glog, nlog or

IHS transformations. SUM normalisation, RF missing

value imputation, glog transformation and no scaling

contributed 100 % variance in PC1 ? PC2 and the most

statistically significant p-value for PC1. While the combi-

nation of SUM or PQN normalisation and no missing value

imputation may be addressed as a solution, it must be

remarked that the PCA computation on datasets including

missing values is slower compared to the calculation on

imputed datasets because of the use of the NIPALS algo-

rithm which imputes missing values; furthermore the

evaluation of PLS-DA models from datasets containing

missing values often encounters several technical issues

(e.g. cross-validation methods do not work well when

missing values are present). PQN, despite achieving lower

p-values compared to SUM permutations, still produces

good separation across both principal components. As

discussed above, SUM normalisation cannot deal well with

large differences in a few metabolites in large datasets and

so PQN normalisation is recommended (Kohl et al. 2012).

It is notable that once a transformation is performed scaling

is not necessary to obtain PCA models that show the most

statistically significant p-value for PC1. Examples of PCA

scores plots for a method which is appropriate and is not

appropriate is shown in Fig. 1.

3.2.2.2 PLS-DA The dataset was applied to assess all 280

permutations of normalisation, missing value imputation,

transformation and scaling followed by PLS-DA analysis.

The results are shown in SI10 and the top eight ranked

permutations based on the highest R2 value with a R2 - Q2

difference of less than 0.20 are shown in Table 5. The

permutations where higher R2 values were observed show

no distinct trend. There is no significant advantage obtained

by applying SUM normalisation or PQN normalisation.

KNN and BPCA missing value imputation operate more

effectively than other imputation methods, including RF.

The highest ranked permutations with the smallest R2 - Q2

difference were (1) PQN normalisation, BPCA MVI, glog

transformation and range scaling and (2) SUM or PQN

normalisation, KNN MVI, glog transformation and no

scaling. Importantly, the optimal data processing methods

for PLS-DA are different to the optimal methods for PCA.

Examples of PLS-DA scores plots for a method which is

appropriate and is not appropriate is shown in Fig. 1.

3.3 Data processing workflow

Applying the conclusions constructed from the data

reported in this paper we have constructed a standardised

data processing workflow for all mammalian sample

datasets we study. This workflow is described in SI11 and

includes peak picking, quality control, metabolite annota-

tion, metabolite feature filtering, missing value imputation,

normalisation and transformation processes applicable for

both univariate and multivariate (PCA and PLS-DA) data

analysis methods.

Table 4 Summary of the top ten permutations according to p-value achieved for PC1 scores values

Normalisation MVI Transformation Scaling Variance (PC1; %) Variance (PC2; %) P-value (PC1)

SUM RF glog None 42.7 39.3 4.82E-12

SUM RF nlog None 44.7 28.6 1.66E-08

PQN RF glog None 43.9 28.7 1.66E-08

PQN RF IHS None 44.7 28.6 1.83E-07

PQN RF nlog None 44.7 28.6 1.83E-07

SUM RF glog Pareto 41.5 31.2 0.01601

SUM RF nlog Pareto 43.2 30.4 0.02768

PQN RF nlog Pareto 42.1 31.2 0.02934

PQN RF IHS Pareto 42.1 31.2 0.02934

PQN RF glog Pareto 41.7 31.5 0.03482

The greater the combined percentage variance for PC1 and PC2 and the lowest p-values for PC1 and PC2 implies the data processing has

performed more ideally

PQN probabilistic quotient normalization, RF random forest, glog generalised log, nlog normal log, IHS inverse hyperbolic sine
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4 Concluding remarks

This study has highlighted important relationships between

normalisation, missing value imputation, transformation and

scaling methods and how these should be applied prior to

univariate and multivariate analysis. Once data is filtered,

missing values are not correlated with m/z, retention time or

response; instead missing values are randomly observed in

datasets and are potentially a cause of errors in peak picking

software. As has been reported previously, many missing

value imputation methods negatively influence univariate

analysis outcomes though we have shown here that the RF

Fig. 1 Examples of PCA and PLS-DA scores plots for acceptable and

not acceptable data processing methods a PCA scores plot for data

processed applying RF missing value imputation, SUM normalisa-

tion, glog transformation and no scaling which is defined as an

acceptable method; 100 % variance accounted for in PC1 and 2, PC1

p = 4.8E-12; b PCA scores plot for data processed applying small

value missing value imputation, SUM normalisation, glog transfor-

mation and no scaling which is defined as not an acceptable method;

25.7 % variance accounted for in PC1 and 2, PC1 p = 1.8E-7; c PLS-

DA scores plot for data processed applying KNN missing value

imputation, PQN normalisation, glog transformation and no scaling

which is defined as an acceptable method; R2 = 0.61, Q2 = 0.46;

d PLS-DA scores plot for data processed applying small value

missing value imputation, SUM normalisation, glog transformation

and no scaling which is defined as not an acceptable method;

R2 = 0.42, Q2 = 0.31. Red circles = Class A; black crosses = Class

B; Green triangles = QC sample (Color figure online)
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missing value imputationmethod performs equivalently to no

missing value imputation. We recommend that no missing

value imputation, no scaling and no transformations are used

prior to univariate statistical analysis. When using SUM or

PQN normalisation with RF missing value imputation or no

missing value imputation and no other data processing

methods applied, a high number of metabolite features were

determined to be statistically significant while the false pos-

itive rate was 0 %. Normalisation, missing value imputation,

scaling and transformation all impacted on the results

observed for PCA and PLS-DA; datasets treated differently

resulted in diverse clustering trends. It has been found for

PCA that SUM or PQN normalisation, in combination with

RF missing value imputation, glog transformation, and no

scaling highlights the metabolite features with a significant

fold change between classes regardless of the metabolite

feature response with the highest percentage variance

explained in PC1 and PC2 and with the most statistically

significant p-value for PC1.We recommend this combination

of data processingmethods for PCA including the use of PQN

rather than SUM normalisation because SUM normalisation

has been shown to not be robust when a small number of

metabolites with a large fold change is present. RF was

reported as being the most valid missing value imputation

method for PCA. For PLS-DA, KNN and BPCA missing

value imputation operate more effectively than other impu-

tation methods, including RF. The highest ranked permuta-

tions with the smallest R2 - Q2 difference were (1) PQN

normalisation, BPCA MVI, glog transformation and range

scaling and (2) SUM normalisation, KNN MVI, glog trans-

formation and no scaling.We recommend the second of these

permutations for PLS-DA analysis. Therefore we conclude

that the best data processing procedures to apply when per-

forming UHPLC–MS driven non-targeted metabolomics are

different for univariate, PCA and PLS-DA methods when

searching for the biologically important metabolite features

independent of response. Importantly, our evaluation is based

on classification and the use of Pareto scaling is recom-

mended when determining the metabolites of biological

significance in multivariate analysis.
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