249 research outputs found

    Three-dimensional femtosecond laser nanolithography of crystals

    Get PDF
    Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivity of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.Comment: Submitted Manuscript and Supplementary Informatio

    First administration to man of Org 25435, an intravenous anaesthetic: A Phase 1 Clinical Trial

    Get PDF
    BACKGROUND: Org 25435 is a new water-soluble alpha-amino acid ester intravenous anaesthetic which proved satisfactory in animal studies. This study aimed to assess the safety, tolerability and efficacy of Org 25435 and to obtain preliminary pharmacodynamic and pharmacokinetic data. METHODS: In the Short Infusion study 8 healthy male volunteers received a 1 minute infusion of 0.25, 0.5, 1.0, or 2.0 mg/kg (n = 2 per group); a further 10 received 3.0 mg/kg (n = 5) or 4.0 mg/kg (n = 5). Following preliminary pharmacokinetic modelling 7 subjects received a titrated 30 minute Target Controlled Infusion (TCI), total dose 5.8-20 mg/kg. RESULTS: Within the Short Infusion study, all subjects were successfully anaesthetised at 3 and 4 mg/kg. Within the TCI study 5 subjects were anaesthetised and 2 showed signs of sedation. Org 25435 caused hypotension and tachycardia at doses over 2 mg/kg. Recovery from anaesthesia after a 30 min administration of Org 25435 was slow (13.7 min). Pharmacokinetic modelling suggests that the context sensitive half-time of Org 25435 is slightly shorter than that of propofol in infusions up to 20 minutes but progressively longer thereafter. CONCLUSIONS: Org 25435 is an effective intravenous anaesthetic in man at doses of 3 and 4 mg/kg given over 1 minute. Longer infusions can maintain anaesthesia but recovery is slow. Hypotension and tachycardia during anaesthesia and slow recovery of consciousness after cessation of drug administration suggest this compound has no advantages over currently available intravenous anaesthetics

    CT-guided intratumoural administration of cisplatin/epinephrine gel for treatment of malignant liver tumours

    Get PDF
    To analyze prospectively the interventional and clinical aspects of computed tomography-guided direct intratumoural injection of a novel chemotherapeutic administration and the parenchymal changes of tumour and necrosis in malignant liver tumours. Eight patients with 17 colorectal liver metastases were treated with a mean of 5.1 injections and nine patients with 13 hepatocellular carcinoma nodules with a mean of 3.1 treatments with computed tomography guided local applications of a novel cisplatin/epinephrine gel. This application provides a higher local and lower systemic drug concentration. Volumes of tumour and necrosis prior and after treatment were measured by computer generated volumetric analysis. Contrast enhanced studies verified pretherapeutic viable tumour volumes with a value of 77.4 ml in the metastases and 29.2 ml in the hepatocellular carcinoma nodules. Intratumoural drug application resulted in a significant increase of necrosis and a decrease in viable tumour volume to be 68.3 ml in metastases and 14.5 ml in hepatocellular carcinoma. Local therapy control rate for the follow up to 6 months was 38 and 71% for the group of metastases and hepatocellular carcinoma, respectively. Direct intratumoural injection of cisplatin/epinepthrine injectable gel is a feasible and good tolerated method and results in the development of a statistically significant increase in necrosis in malignant liver tumours. For hepatocellular carcinoma a higher local therapy control rate compared to colorectal metastases can be reported

    Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells

    Get PDF
    Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca+2] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca+2] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca+2] and endoplasmic reticulum [Ca+2]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP3Rs and RyRs and substantially reduced by strong [Ca2+] buffering. Inhibition of IP3Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2′. CICR induced by different doses of BH3I-2′ in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca+2] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed

    Neuromuscular imaging in inherited muscle diseases

    Get PDF
    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies

    Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.</p> <p>Methods</p> <p>Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of <sup>18 </sup>F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).</p> <p>Results</p> <p>In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both <sup>18</sup>F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.</p> <p>Conclusions</p> <p>The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.</p

    Analysis of Interactions of Salmonella Type Three Secretion Mutants with 3-D Intestinal Epithelial Cells

    Get PDF
    The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms

    Cyclic AMP signalling pathways in the regulation of uterine relaxation

    Get PDF
    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications

    Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease

    Get PDF
    Tau dysfunction characterizes neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Here, we performed an unbiased SAGE (serial analysis of gene expression) of differentially expressed mRNAs in the amygdala of transgenic pR5 mice that express human tau carrying the P301L mutation previously identified in familial cases of FTLD. SAGE identified 29 deregulated transcripts including Sfpq that encodes a nuclear factor implicated in the splicing and regulation of gene expression. To assess the relevance for human disease we analyzed brains from AD, Pick's disease (PiD, a form of FTLD), and control cases. Strikingly, in AD and PiD, both dementias with a tau pathology, affected brain areas showed a virtually complete nuclear depletion of SFPQ in both neurons and astrocytes, along with cytoplasmic accumulation. Accordingly, neurons harboring either AD tangles or Pick bodies were also depleted of SFPQ. Immunoblot analysis of human entorhinal cortex samples revealed reduced SFPQ levels with advanced Braak stages suggesting that the SFPQ pathology may progress together with the tau pathology in AD. To determine a causal role for tau, we stably expressed both wild-type and P301L human tau in human SH-SY5Y neuroblastoma cells, an established cell culture model of tau pathology. The cells were differentiated by two independent methods, mitomycin C-mediated cell cycle arrest or neuronal differentiation with retinoic acid. Confocal microscopy revealed that SFPQ was confined to nuclei in non-transfected wild-type cells, whereas in wild-type and P301L tau over-expressing cells, irrespective of the differentiation method, it formed aggregates in the cytoplasm, suggesting that pathogenic tau drives SFPQ pathology in post-mitotic cells. Our findings add SFPQ to a growing list of transcription factors with an altered nucleo-cytoplasmic distribution under neurodegenerative conditions
    corecore