33 research outputs found

    Uninvited Guests: Traditional Insect Repellents in Estonia used Against the Clothes Moth Tineola bisselliella, Human Flea Pulex irritons and Bedbug Cimex lectularius

    Get PDF
    Extensive folklore records from pre-modern Estonia give us an excellent opportunity to study a variety of local plant knowledge and plant use among the peasantry in various parts of the country. One important biocultural domain where plant knowledge has been crucial was in the various methods of combating different ectoparasites that cohabited and coexisted with humans and their domestic animals. Some of these methods were widely known (world-wide, Eurasia, Europe, Baltic Rim), while others were more local. Here we discuss ways of reducing clothes moths Tineola bisselliella (Hummel) (Lepidoptera: Tineidae), human fleas Pulex irritons L. (Siphonaptera: Pulicidae) and bedbugs Cimex lectularius L. (Hemiptera: Cimicidae) with the help of plants. Various taxa used as traditional repellents have been identified. The use of plants as repellents and their toxic principles are also discussed from a comparative perspective

    Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation

    Get PDF
    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis
    corecore