61 research outputs found

    Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    Get PDF
    The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm

    Response to Therapeutic Sleep Deprivation: A Naturalistic Study of Clinical and Genetic Factors and Post-treatment Depressive Symptom Trajectory

    Get PDF
    Research has shown that therapeutic sleep deprivation (SD) has rapid antidepressant effects in the majority of depressed patients. Investigation of factors preceding and accompanying these effects may facilitate the identification of the underlying biological mechanisms. This exploratory study aimed to examine clinical and genetic factors predicting response to SD and determine the impact of SD on illness course. Mood during SD was also assessed via visual analogue scale. Depressed inpatients (n = 78) and healthy controls (n = 15) underwent ~36 h of SD. Response to SD was defined as a score of ≀ 2 on the Clinical Global Impression Scale for Global Improvement. Depressive symptom trajectories were evaluated for up to a month using self/expert ratings. Impact of genetic burden was calculated using polygenic risk scores for major depressive disorder. In total, 72% of patients responded to SD. Responders and non-responders did not differ in baseline self/expert depression symptom ratings, but mood differed. Response was associated with lower age (p = 0.007) and later age at life-time disease onset (p = 0.003). Higher genetic burden of depression was observed in non-responders than healthy controls. Up to a month post SD, depressive symptoms decreased in both patients groups, but more in responders, in whom effects were sustained. The present findings suggest that re-examining SD with a greater focus on biological mechanisms will lead to better understanding of mechanisms of depression

    Contributions of animal models to the study of mood disorders

    Full text link

    Stabilization of coupled convection-diffusion-reaction equations for continuum dislocation transport

    No full text
    The plasticity of crystalline materials can be described at the meso-scale by dislocations transport models, typically formulated in terms of dislocation densities. This leads to sets of coupled nonlinear partial differential equations involving diffusive and convective transport mechanisms. Since exact solutions for these systems are not available, numerical approximations are needed to efficiently solve them. The properties of these systems of equations cause most traditional numerical methods to fail, even for the case of a single equation. For systems of equations the problem is even more challenging due to the lack of fundamental principles guiding numerical discretization strategies. Special strategies must be developed and carefully applied to obtain physically meaningful and numerically stable approximations. The objective of this paper is to construct a coefficient perturbation-based stabilization technique for general systems of equations and to apply it to the modelling of one-dimensional dislocation transport. A detailed numerical study is carried out in order to demonstrate its ability to render well-behaved and physically admissible numerical approximations

    A stabilization technique for coupled convection-diffusion-reaction equations

    No full text
    \u3cp\u3ePartial differential equations having diffusive, convective, and reactive terms appear in the modeling of a large variety of processes in several branches of science. Often, several species or components interact with each other, rendering strongly coupled systems of convection-diffusion-reaction equations. Exact solutions are available in extremely few cases lacking practical interest due to the simplifications made to render such equations amenable by analytical tools. Then, numerical approximation remains the best strategy for solving these problems. The properties of these systems of equations, particularly the lack of sufficient physical diffusion, cause most traditional numerical methods to fail, with the appearance of violent and nonphysical oscillations, even for the single equation case. For systems of equations, the situation is even harder due to the lack of fundamental principles guiding numerical discretization. Therefore, strategies must be developed in order to obtain physically meaningful and numerically stable approximations. Such stabilization techniques have been extensively developed for the single equation case in contrast to the multiple equations case. This paper presents a perturbation-based stabilization technique for coupled systems of one-dimensional convection-diffusion-reaction equations. Its characteristics are discussed, providing evidence of its versatility and effectiveness through a thorough assessment.\u3c/p\u3
    • 

    corecore