58 research outputs found
Inflammasome Sensor Nlrp1b-Dependent Resistance to Anthrax Is Mediated by Caspase-1, IL-1 Signaling and Neutrophil Recruitment
Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1bS/S or Nlrp1bR/R, respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1bS/S alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1bR/R alleles (which cannot activate caspase-1 in response to toxin). Nlrp1bS-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1bS/S mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1bS/S mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1bS/S,Nlrp1bR/R and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1bS, caspase-1, and IL-1β in countering anthrax infection
Cultural Aspects of Attachment Anxiety, Avoidance, and Life Satisfaction: Comparing the US and Turkey
Attachment insecurity can interfere with the experience, expression, and benefits of positive emotions, including happiness and life satisfaction (LS). However, both the pattern and effects of insecure attachment orientations on LS vary across cultures. Considering that attachment anxiety is higher in collectivist cultures and attachment avoidance is relatively high in individualistic cultures, the present chapter elaborates on the idea that anxious and avoidant attachment would have varying effects on LS in individualistic and collectivistic cultural contexts. Study 1 (N = 2456) involved a community sample of married couples in Turkey and demonstrated that attachment avoidance was a stronger predictor of LS than attachment anxiety in Turkish collectivist context. Study 2 tested the hypothesis that the roles of attachment anxiety and avoidance in predicting LS would vary between collectivistic and individualistic cultures. Mothers’ adult attachment dimensions and LS in Turkey (N = 89) and the United States (N = 91) were measured. As expected, results indicated that LS was predicted only by attachment avoidance in Turkey and by attachment anxiety in the United States. These findings are in line with the cultural fit hypothesis, suggesting that culturally incongruent attachment orientations have a stronger negative impact on individuals’ LS
Fluorescent amino acids as versatile building blocks for chemical biology
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein–protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging. [Figure not available: see fulltext.]
Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications
- …