17 research outputs found

    Abdominal muscle fatigue following exercise in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic obstructive pulmonary disease, a restriction on maximum ventilatory capacity contributes to exercise limitation. It has been demonstrated that the diaphragm in COPD is relatively protected from fatigue during exercise. Because of expiratory flow limitation the abdominal muscles are activated early during exercise in COPD. This adds significantly to the work of breathing and may therefore contribute to exercise limitation. In healthy subjects, prior expiratory muscle fatigue has been shown itself to contribute to the development of quadriceps fatigue. It is not known whether fatigue of the abdominal muscles occurs during exercise in COPD.</p> <p>Methods</p> <p>Twitch gastric pressure (TwT10Pga), elicited by magnetic stimulation over the 10<sup>th </sup>thoracic vertebra and twitch transdiaphragmatic pressure (TwPdi), elicited by bilateral anterolateral magnetic phrenic nerve stimulation were measured before and after symptom-limited, incremental cycle ergometry in patients with COPD.</p> <p>Results</p> <p>Twenty-three COPD patients, with a mean (SD) FEV<sub>1 </sub>40.8(23.1)% predicted, achieved a mean peak workload of 53.5(15.9) W. Following exercise, TwT<sub>10</sub>Pga fell from 51.3(27.1) cmH<sub>2</sub>O to 47.4(25.2) cmH<sub>2</sub>O (p = 0.011). TwPdi did not change significantly; pre 17.0(6.4) cmH<sub>2</sub>O post 17.5(5.9) cmH<sub>2</sub>O (p = 0.7). Fatiguers, defined as having a fall TwT10Pga ≄ 10% had significantly worse lung gas transfer, but did not differ in other exercise parameters.</p> <p>Conclusions</p> <p>In patients with COPD, abdominal muscle but not diaphragm fatigue develops following symptom limited incremental cycle ergometry. Further work is needed to establish whether abdominal muscle fatigue is relevant to exercise limitation in COPD, perhaps indirectly through an effect on quadriceps fatigability.</p

    Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex

    Get PDF
    <div><p>The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway <i>in vivo</i>. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel <i>in vitro</i>. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished <i>in vivo</i>.</p></div

    Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations

    Full text link
    Purpose: Fatigue in leg muscles might differ between running and cycling due to inherent differences in muscle activation patterns. Moreover, postural demand placed upon the diaphragm during running could augment the development of diaphragm fatigue. Methods: We investigated quadriceps and diaphragm fatigue in 11 runners and 11 cyclists (age: 29±5years; V˙\dot{V} O2,peak: 66.9±5.5mlmin−1kg−1) by assessing quadriceps twitch force (Q tw) and transdiaphragmatic twitch pressure (P di,tw) before and after 15- and 30-min time-trials (15TT, 30TT). Inspiratory muscle fatigue was also obtained after volitional normocapnic hyperpnoea (NH) where postural demand is negligible. We hypothesized that running and cycling would induce different patterns of fatigue and that runners would develop less respiratory muscle fatigue when performing NH. Results: The reduction in Q tw was greater in cyclists (32±6%) compared to runners (13±8%, p0.05). Conclusion: Different levels of leg muscle fatigue in runners and cyclists could in part be related to the specific muscle activation patterns including concentric contractions in both modalities but eccentric contractions in runners only. Diaphragm fatigue likely resulted from the large ventilatory load which is characteristic for both exercise modalities and which was higher in 15TTs than in 30TTs (+27%, p<0.01) while postural demand appears to be of less importance
    corecore