39 research outputs found

    Clear cell chondrosarcoma of the head and neck

    Get PDF
    Clear cell chondrosarcoma is a rare variant of chondrosarcoma that mostly involves the end of long bones. However, nine cases have been reported in the head and neck: four in larynx, two in nasal septum, two in maxilla and one in the skull. These cases form the basis of this review. Head and neck cases accounts for less than 5% of Clear cell chondrosarcomas in the whole body and the larynx is the most common place. The histological findings of head and neck cases are consistent with general features of this entity in the whole body and nearly all tumors in this case series had a component of conventional chondrosarcoma. Clear cell chondrosarcoma is an intracompartmental tumor and retains "Grenz zone" just beneath the epithelium. Therefore, the overlying mucosa remained intact in all laryngeal cases. Nasal tumor caused ballooning of the septum and the maxillary lesion did not involve the oral mucosa. This tumor presents various radiographic features in the head and neck area. Chondroblastoma, chondroma, osteoblastoma, osteosarcoma and metastatic renal cell carcinoma are included in the histologic differential diagnoses. Differentiation from chondroblastic osteosarcoma is important in the maxilla. A wide resection is adequate in most cases. However, some laryngeal cases show tendency to recur. Clear cell chondrosarcoma is a slow growing tumor and this necessitates a long time follow-up of patients. Due to the extreme rarity in the head and neck, diagnosis of Clear cell chondrosarcoma in this area, must be confirmed by histochemical and immunohistochemical studies

    Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype.</p> <p>Methods</p> <p>To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function.</p> <p>Results</p> <p>Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens.</p> <p>Conclusion</p> <p>The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.</p

    Nonsense Mediated Decay Resistant Mutations Are a Source of Expressed Mutant Proteins in Colon Cancer Cell Lines with Microsatellite Instability

    Get PDF
    BACKGROUND: Frameshift mutations in microsatellite instability high (MSI-High) colorectal cancers are a potential source of targetable neo-antigens. Many nonsense transcripts are subject to rapid degradation due to nonsense-mediated decay (NMD), but nonsense transcripts with a cMS in the last exon or near the last exon-exon junction have intrinsic resistance to nonsense-mediated decay (NMD). NMD-resistant transcripts are therefore a likely source of expressed mutant proteins in MSI-High tumours. METHODS: Using antibodies to the conserved N-termini of predicted mutant proteins, we analysed MSI-High colorectal cancer cell lines for examples of naturally expressed mutant proteins arising from frameshift mutations in coding microsatellites (cMS) by immunoprecipitation and Western Blot experiments. Detected mutant protein bands from NMD-resistant transcripts were further validated by gene-specific short-interfering RNA (siRNA) knockdown. A genome-wide search was performed to identify cMS-containing genes likely to generate NMD-resistant transcripts that could encode for antigenic expressed mutant proteins in MSI-High colon cancers. These genes were screened for cMS mutations in the MSI-High colon cancer cell lines. RESULTS: Mutant protein bands of expected molecular weight were detected in mutated MSI-High cell lines for NMD-resistant transcripts (CREBBP, EP300, TTK), but not NMD-sensitive transcripts (BAX, CASP5, MSH3). Expression of the mutant CREBBP and EP300 proteins was confirmed by siRNA knockdown. Five cMS-bearing genes identified from the genome-wide search and without existing mutation data (SFRS12IP1, MED8, ASXL1, FBXL3 and RGS12) were found to be mutated in at least 5 of 11 (45%) of the MSI-High cell lines tested. CONCLUSION: NMD-resistant transcripts can give rise to expressed mutant proteins in MSI-High colon cancer cells. If commonly expressed in primary MSI-High colon cancers, MSI-derived mutant proteins could be useful as cancer specific immunological targets in a vaccine targeting MSI-High colonic tumours

    Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings

    No full text
    International audiencePrenatal manifestations of inborn errors of metabolism (IEM) are related to severe disorders involving metabolic pathways active in the fetal period and not compensated by maternal or placental metabolism. Some prenatal imaging findings can be suggestive of such conditions-especially in cases of consanguinity and/or recurrence of symptoms-after exclusion of the most frequent nonmetabolic etiologies. Most of these prenatal imaging findings are nonspecific. They include mainly ascites and hydrops fetalis, intrauterine growth restriction (IUGR), central nervous system (CNS) anomalies, echogenic kidneys, epiphyseal stippling, craniosynostosis, and a wide spectrum of dysostoses. These anomalies can be isolated, but in most cases, an IEM is suggested by an association of features. It must be stressed that the diagnosis of an IEM in the prenatal period is based on a close collaboration between specialists in fetal imaging, medicine, genetics, biology, and pathology
    corecore