14 research outputs found

    Counting on the mental number line to make a move: sensorimotor ('pen') control and numerical processing

    Get PDF
    Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor ‘pen’ control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1–9), where number colour indicated whether the line ran left–right (‘normal’) or vice versa (‘reversed’). The task could be simplified through the use of a ‘mental number line’ (MNL). Many modern societies use number lines in mathematical education and the brain’s representation of number appears to follow a culturally determined spatial organisation (so better task performance is associated with this culturally normal orientation—the MNL effect). Participants (counter-balanced) completed two consistent blocks of trials, ‘normal’ and ‘reversed’, followed by a mixed block where line direction varied randomly. Experiment 1 established that the MNL effect was robust, and showed that the cognitive load associated with reversing the MNL not only affected response selection but also the actual movement execution (indexed by duration) within the mixed trials. Experiment 2 showed that an individual’s motor abilities predicted performance in the difficult (mixed) condition but not the easier blocks. These results suggest that numerical processing is not isolated from motor capabilities—a finding with applied consequences

    Lost to translation: How design factors of the mouse-tracking procedure impact the inference from action to cognition

    Get PDF
    From an embodiment perspective, action and cognition influence each other constantly. This interaction has been utilized in mouse-tracking studies to infer cognitive states from movements, assuming a continuous manifestation of cognitive processing into movement. However, it is mostly unknown how this manifestation is affected by the variety of possible design choices in mouse-tracking paradigms. Here we studied how three design factors impact the manifestation of cognition into movement in a Simon task with mouse tracking. We varied the response selection (i.e., with or without clicking), the ratio between hand and mouse cursor movement, and the location of the response boxes. The results show that all design factors can blur or even prevent the manifestation of cognition into movement, as reflected by a reduction in movement consistency and action dynamics, as well as by the adoption of unsuitable movement strategies. We conclude that deliberate and careful design choices in mouse-tracking experiments are crucial to ensuring a continuous manifestation of cognition in movement. We discuss the importance of developing a standard practice in the design of mouse-tracking experiments
    corecore