292 research outputs found

    Myocardial perfusion reserve compared with peripheral perfusion reserve: a [13N]ammonia PET study

    Get PDF
    13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 +/- A 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 +/- A 0.47; SX 1.39 +/- A 0.31; DCM 1.72 +/- A 0.69; NC 2.91 +/- A 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 +/- A 0.79; SX 1.36 +/- A 0.71; DCM 1.60 +/- A 1.22; NC 1.27 +/- A 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress

    PET and MRI for the evaluation of regional myocardial perfusion and wall thickening after myocardial infarction

    Get PDF
    Deterioration of left ventricular (LV) function after myocardial infarction (MI) is a major cause of heart failure. Myocardial perfusion performance may play an important role in deterioration or improvement in LV function after MI. The aim of this study was to evaluate the myocardial perfusion reserve (MPR) and stress perfusion in deteriorating and non-deteriorating LV segments in patients after MI by PET and MRI, respectively. Regional wall thickening of 352 segments in 22 patients was assessed at 4 and 24 months after MI by cardiac MRI. PET was performed to evaluate MPR and adenosine stress N-13-ammonia perfusion 24 months after MI. Segments were divided into four groups according to deterioration or improvement in wall thickening. Normal functional segments at 4 months after MI that remained stable had a significantly higher mean MPR and mean stress perfusion PET value than deteriorated segments (p < 0.001). Furthermore, dysfunctional segments that improved had a significantly higher mean stress perfusion PET value than dysfunctional segments that remained dysfunctional (p < 0.001). This study demonstrated the additional value of myocardial perfusion assessment in relation to the functional integrity of the injured myocardium. Segmental functional LV improvement after MI was associated with better regional myocardial perfusion characteristics. Furthermore, the amount of wall thickening reduction was associated with regional myocardial perfusion abnormalities in patients after MI

    Myocardial perfusion reserve compared with peripheral perfusion reserve: A [13N]ammonia PET study

    Get PDF
    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. METHODS: [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 ± 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. RESULTS: Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 ± 0.47; SX 1.39 ± 0.31; DCM 1.72 ± 0.69; NC 2.91 ± 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 ± 0.79; SX 1.36 ± 0.71; DCM 1.60 ± 1.22; NC 1.27 ± 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). CONCLUSION: No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress

    Myocardial perfusion reserve and contractile pattern after beta-blocker therapy in patients with idiopathic dilated cardiomyopathy

    Get PDF
    In Idiopathic Dilated Cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. The ensuing subclinical myocardial ischemia may contribute to progressive deterioration of LV function. beta-blocker is the therapy of choice in these patients. However, not all patients respond to the same extent. The aim of this study was to elucidate whether differences between responders and non-responders can be identified with respect to regional myocardial perfusion reserve (MPR) and contractile performance. Patients with newly diagnosed IDC underwent Positron Emission Tomography (PET) scanning using both (13)N-ammonia as a perfusion tracer (baseline and dipyridamole stress), and (18)F-fluoro-deoxyglucose as a metabolism tracer, and a dobutamine stress MRI. MRI and PET were repeated 6 months after maximal beta-blocker therapy. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17 segment-model. Functional response to beta-blocker therapy was assigned as a stable or improved LVEF or diminished LVEF. Sixteen patients were included (age 47.9 +/- A 11.5 years; 12 males, LVEF 28.6 +/- A 8.4%). Seven patients showed improved LVEF (9.7 +/- A 3.1%), and nine patients did not show improved LVEF (-3.4 +/- A 3.9%). MPR improved significantly in responders (1.56 +/- A .23 to 1.93 +/- A .49, P = .049), and MPR decreased in non-responders; however, not significantly (1.98 +/- A .70 to 1.61 +/- A .28, P = .064), but was significantly different between both groups (P = .017) after beta-blocker therapy. A significant correlation was found between change in perfusion reserve and change in LVEF: a decrease in perfusion reserve was associated with a decrease in LVEF and vice versa. Summed rest score of wall motion in responders improved from 26 to 21 (P = .022) whereas in non-responders no change was observed from 26 to 25) (P = ns). Summed stress score of wall motion in responders improved from 23 to 21 (P = .027) whereas in non-responders no change was observed from 27 to 26) (P = ns). In IDC patients, global as well as regional improvement after initiation of beta-blocker treatment is accompanied by an improvement in regional perfusion parameters. On the other hand in IDC patients with further left ventricular function deterioration after initiation of beta-blocker therapy this is accompanied by a decrease in perfusion reserve

    The design of a learning environment based on the theory of multiple intelligence and the study its effectiveness on the achievements, attitudes and retention of students

    Get PDF
    AbstractMultiple intelligences theory (MIT) which takes into account students’ individual differences has an important role in the teaching and learning process. In this study a novel learning environment based on MIT which takes students’ interests and needs into an account has been developed. Many activities were carried out depending on students’ intelligence types. The effects of different activities on students’ achievements, attitudes toward chemistry and retention of knowledge in periodical features’ variety at the 10th class were measured and compared. The comparison between experimental group, which was instructed through MIT learning strategies and materials, and control group thought by traditional methods was observed. The research was applied in the first semester of 2009-2010 education years. The study carried out on 75 high school students in Izmir. The application of the study was lasted for 8 weeks containing methods and tests’ practices. Following MIT assessment survey, achievement test and attitude scales were used to analyze its effectiveness. Based on the theories and literature data, an instructional material included concept maps, puzzles, stories, classical music in background, group games, and photos about periodic features’ variety as an alternative to traditional written material. As a result of statistical analysis there were significant differences between achievement post-test and attitudes post-test towards chemistry course of control and experimental groups. Consequently, instructional methods needed to be varied so students could use their intellectual strengths to better understand topics, increase their intrinsic motivation, intervention and encourage active student engagement to improve learning at middle school level

    Diagnostic classification of childhood cancer using multiscale transcriptomics

    Get PDF
    The causes of pediatric cancers’ distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types

    Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning

    Get PDF
    Background and purpose: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. / Methods: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. / Results: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65–0.79), 0.76 (95% CI 0.68–0.82) and 0.77 (95% CI 0.70–0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. / Conclusion: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features
    corecore