
Nature Medicine | Volume 29 | March 2023 | 656–666 656

nature medicine

Article https://doi.org/10.1038/s41591-023-02221-x

Diagnostic classification of childhood cancer 
using multiscale transcriptomics
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The causes of pediatric cancers’ distinctiveness compared to adult-onset 
tumors of the same type are not completely clear and not fully explained 
by their genomes. In this study, we used an optimized multilevel RNA 
clustering approach to derive molecular definitions for most childhood 
cancers. Applying this method to 13,313 transcriptomes, we constructed a 
pediatric cancer atlas to explore age-associated changes. Tumor entities 
were sometimes unexpectedly grouped due to common lineages, drivers or 
stemness profiles. Some established entities were divided into subgroups 
that predicted outcome better than current diagnostic approaches. These 
definitions account for inter-tumoral and intra-tumoral heterogeneity and 
have the potential of enabling reproducible, quantifiable diagnostics. As 
a whole, childhood tumors had more transcriptional diversity than adult 
tumors, maintaining greater expression flexibility. To apply these insights, 
we designed an ensemble convolutional neural network classifier. We show 
that this tool was able to match or clarify the diagnosis for 85% of childhood 
tumors in a prospective cohort. If further validated, this framework could be 
extended to derive molecular definitions for all cancer types.

Over 400,000 childhood cancers are diagnosed per year worldwide1. 
Compared to adult cancers, childhood tumors are more likely to emerge 
from embryonic tissue and impact different cell types2–5. Most adult 
extracranial solid tumors are carcinomas, whereas mesodermal and 
embryonal tumors are more frequent in children6. One-third of childhood 
cancers are leukemias, which are proportionally not as common in adults. 
The same is true of neuroblastoma, a heterogeneous cancer ranging from 
a spontaneously regressing form in infants to a malignant progressing 
entity in older children and adolescents and rarely found in adults2,3.

Currently, no comprehensive molecular assay can aid in the 
diagnosis of all pediatric cancers. Genome sequencing can reveal 

the tumor’s history, including mutations preceding its malignant 
transformation7, and can be disconnected from the tumor’s current 
phenotype. On the other hand, RNA sequencing (RNA-seq) is reflec-
tive of the tumor’s ongoing expression program and can differentiate 
tumors independent of genomic origin8. Because a critical number of 
childhood tumor transcriptomes are or will soon be available9, RNA-seq 
has the potential to become a standalone ‘universal diagnostic assay’.

Most transcriptome-based classifiers are fully supervised tools, 
reliant on the tumors’ pre-existing labels without allowing for much 
phenotypic variability. However, intra-tumoral transcriptional dif-
ferences can be so pronounced that they result in both favorable and 
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OTTER maintains high performance across all cancer types  
(Supplementary Fig. 2) as well as in the presence of multiple tumor 
mixtures, high normal contamination or technical noise (Supple-
mentary Figs. 3–5). More importantly, tumor matching is robust  
even with very shallow sequencing (Fig. 1b). Using only a few million 
reads, OTTER can output highly consistent predictions in just a few 
minutes (Supplementary Fig. 6).

Pediatric tumors: many subtypes, few cell-of-origin groups
The 13,313 tumor and non-neoplastic samples were divided into 455 
classes, arranged across eight levels (Fig. 2a,b, Extended Data Figs. 2–4, 
Supplementary Fig. 7 and Supplementary Tables 1 and 2). There were 
26 main tumor types at the top-most level, which were further divided 
into up to 48 subtypes each. To better understand the structure of  
these trees, we developed a score to measure the relative size of  
offspring branching along the hierarchy tree, called the Population- 
Weighted Splits (PaWS) (Fig. 2b, Supplementary Fig. 8 and Methods). 
Four main tumor types with the highest PaWS scores (deepest branch-
ing) encompassed a large proportion of the entire cohort. Together, 
the pan-leukemia group (T005 LEUK), squamous cell cancers (T012 
SCC/BLCA), central nervous system tumors (T000 CNS) and sarcomas  
(T002 MESODM STEMlow and T003 MESODM STEMhigh) accounted 
for nearly 39% of all tumor samples. In total, 192 tumor subtypes 
descend from these five tumor clusters.

Tumors from a similar tissue typically co-clustered at the top 
level, as expected22. New factors emerged as drivers of transcriptional 
difference when looking within trees and exploring their structure. 
Age is an important factor—the distribution of cancer types differed 
between adult and childhood cancer. Eighty-five percent of pediatric 
cancers belonged to only six of 26 top-level types, but these were more 
likely to involve deep subtypes (mean PaWS, 0.83 versus 0.50; mean 
number of offspring, 22.6 and 12.2), many of which represented novel 
cancer subtypes.

Similarly, non-neoplastic samples were first grouped by tissue of 
origin, yet, occasionally, the transcriptional stratification transcended 
the organ of origin (Extended Data Figs. 3 and 4).

To further define the transcriptional subtypes of childhood cancer, 
we performed an in-depth annotation of 162 clusters representing  
the major pediatric tumor families. We noted their changes in survival, 
age, sex and underlying genomic alterations where possible, as well 
as key genes differentiating them from their adult counterparts. The 
clusters detailed in this manuscript did not have statistically significant 
differences in sex ratio.

Intrinsic disorder of childhood tumors
Having defined childhood-specific cancer subtypes, we investigated 
their internal differences in gene expression. We measured expression 
fluctuations at the level of individual genes across tumors whose overall 
transcriptional profiles were similar (that is, expression changes of the 
same genes among tumors in the same cluster). These fluctuations were 
quantified using Shannon entropy (S; Methods)23 that, in our context, 
can be thought of as the ‘transcriptional disorder’ of tumor subtypes.

Non-neoplastic tissue was less disordered than cancers. Normal 
cells appear to allow for a narrow range of expression, whereas tumor 
types can tolerate more variation in gene expression while still main-
taining a characteristic expression profile (11% higher entropy on aver-
age at the first level; Supplementary Fig. 9). The same was true when 
comparing tumor clusters to their matching non-neoplastic types 
(average 10% higher S; Supplementary Fig. 10). Not only did tumor sub-
types have a significant increase in transcriptional disorder compared 
to their normal equivalent, but there was a positive correlation between 
most (Pearson 0.56, P = 2.29 × 10−2). This suggests that a tumor’s tran-
scriptional variability may be predetermined by its tissue of origin.

Childhood cancers typically have lower somatic mutation bur-
dens15. As there are fewer mutations potentiating expression changes, 

poor prognostic signatures within the same tumor10,11. Stromal or 
immune infiltration also adds to this diversity12,13. In this Article, we 
identify features that define the unique gene expression profiles of 
childhood cancers compared to adult neoplasms. By incorporating 
measures of transcriptional entropy, we calculate their heteroge-
neity at multiple levels, both between subtly different tumor types 
as well as across major classes of cancer. Far from being ‘quiet’5,14, as 
suggested by DNA analyses15, childhood tumors have more transcrip-
tional diversity, both between and within tumor types, than most adult 
cancers. Accounting for this variability can be leveraged to improve 
the tools used to diagnose childhood cancer. To this end, we built RAC-
COON (Resolution-Adaptive Coarse-to-fine Clusters OptimizatiON), a 
scale-adaptive clustering approach for the unsupervised classification 
of tumor subtypes using RNA-seq. It yielded an atlas of 455 tumor and 
normal classes when applied to a cohort of 13,313 samples, which were 
organized into a hierarchical tree based on their expression similari-
ties. We also designed a classifier for childhood cancer, called OTTER 
(Oncologic TranscripTome Expression Recognition), an ensemble  
of convolutional neural networks (CNNs) targeting this extensive  
hierarchy. It is unique in scope and performs robustly even when  
using a fraction of the RNA-seq data (that is, a few million reads). When 
applied to a held-out cohort, OTTER was concordant with clinical 
pathology diagnoses in 82% of patients, helping to clarify the diagnosis 
for an additional 7% of the cases. Collectively, this work both defines 
the transcriptional distinctiveness of childhood cancer and uses  
this to validate a novel, pan-cancer diagnostic assay.

Results
RACCOON provides an accurate classification of human cancer
To develop molecular definitions of childhood cancers, we designed 
a method that reduces the complexity of RNA-sequenced tumors and 
then groups them into hierarchically organized clusters (Fig. 1a and 
Methods). This was done in a way that would enable a deeper explora-
tion of the transcriptional differences between and within tumor classes 
and would facilitate the discovery of new tumor subtypes. The key tech-
nical innovations used in our method, called RACCOON, are as follows: 
(1) the automatic optimization of parameters—for low-information 
filtering, dimensionality reduction and cluster identification—remov-
ing the need for tumor-type-specific expertise when choosing these 
parameters and (2) the iterative top-down building of hierarchies  
in a way that is scale and dataset independent.

Using this approach on a reference set of 2,178 childhood  
and 9,400 adult tumors, as well as 1,735 non-neoplastic samples16–19 
(Methods), revealed a hierarchy of 455 clusters (or classes), represent-
ing 406 types of cancer. Of these, 69 classes are pediatric, and 49 classes 
are of non-neoplastic, normal tissue. As expected, the silhouette coeffi-
cient, which quantifies how distinct clusters are one from another, was 
high across tumor types and subtypes (Supplementary Fig. 1).

We then built a set of mono-dimensional CNNs20 to match indi-
vidual patients to the tumor classes with high accuracy. The networks 
required for tumor classification were broad and shallow (in compari-
son to image classification, which requires extremely deep CNNs), in 
line with previous observations21. This suggests that a large number of 
patterns need to be evaluated to accurately diagnose cancer but that 
there is limited complexity of interactions between the genes involved.

The top three performing CNNs were integrated into an ensemble, 
OTTER, which achieved higher scores across all metrics than any single 
model (Extended Data Fig. 1) and published classifiers. Because tumors 
can contain multiple distinct cell populations, as well as intermixed 
stroma or immune infiltrate, the classifier was designed to be both mul-
ticlass and multilabel. As such, OTTER reports the probabilities that a 
tumor belongs to a class, as well as its offspring classes, giving a refined 
view of a tumor’s subtype within a specific tumor ‘lineage’. A patient’s 
cancer can also match multiple labels depending on, for example, the 
admixture of distinct cell populations found within the same tissue.
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one might expect a less noisy transcriptome. However, when look-
ing within well-circumscribed tumor classes we found significantly 
higher transcriptional disorder in childhood cancer (Fig. 3b and 
Supplementary Table 1) across all cancer types. This holds true even 
after removing sampling bias by maintaining only classes within 
the interquartile. In all but two tumor types, cancers from younger 
patients had higher disorder than their adult equivalent (Fig. 3d  
and Supplementary Table 3).

We wondered whether the excessive transcriptional disorder  
seen in childhood cancer involved a subset of expressed genes or  
large parts of the transcriptome. This can be quantified by the median 
absolute deviation (MAD) of the per-gene entropy distributions:  
small values mean that most genes are similarly entropic, and high 
values mean that their disorder level can vary widely.

In childhood cancer types, the transcriptional disorder is broader, 
impacting different genes to different degrees, with a higher MAD score 
than adult tumors (Supplementary Table 1).

The most disordered genes represent marker lesions localized 
to a small portion of the genome and are remarkably specific to each 
subtype. We ranked the genes in input to our ensemble CNN by their rel-
evance in identifying each tumor type with feature importance extrac-
tion (Deep Learning Important FeaTures (DeepLIFT)24). In most types, 
the top 10% cumulative importance genes are also those with the high-
est entropy (Fig. 3c). These correspond to disease-defining pathways 
(Extended Data Fig. 5 and Supplementary Table 4). Compared to adult 
malignancies, childhood cancers are mostly transcriptionally distinct, 
forming unique subtypes. However, within these subtypes of childhood 
cancer, there is remarkable flexibility among disease-defining genes.

A stemness superclass of sarcoma
Sarcomas are proportionately more common in childhood. We identi-
fied 55 sarcoma and mesodermal solid tumor clusters, including 37 
subtypes, most of which either contain a known fusion or are derived 

from a common tissue. One can clearly distinguish osteosarcoma 
(T068), leiomyosarcoma (T067), fusion-positive and fusion-negative 
rhabdomyosarcomas (T094 and T093), synovial sarcomas (T100) and 
others. Importantly, other cancers that are thought to derive from the 
mesoderm, such as mesothelioma25 (T070), Wilms tumor26,27 (T092), 
choroid plexus carcinoma28 (T102) and testicular non-seminoma 
germ cell29 (T101 and T105), also clustered with sarcomas, whereas 
Ewing sarcoma (ES) (T005) did not. Overall, the transcriptional contri-
bution from the tissue of origin appears to be greater in sarcoma than  
carcinoma (Figs. 2a and 4).

ES is an example of the uniqueness of pediatric cancers as  
identified by RACCOON. ES forms a unique, separate cluster not  
only from other sarcomas but from all other cancer type. ES is one  
of 26 top-level tumor types and one of only three to have no  
descendants. These unique transcriptional features can be used as 
a straightforward diagnostic test. We found that up to 12% (9/80) of  
ES tumors by standard pathology may be misdiagnosed CIC-driven  
or BCOR-driven sarcomas (Supplementary Table 5).

All non-ES sarcomas were constrained to two mesodermal super-
classes. The first (T002) comprised osteosarcomas, leiomyosarcomas, 
mesotheliomas and a diverse collection of less differentiated soft-tissue 
sarcomas found predominantly in adults. The second (T003) assem-
bled rhabdomyosarcomas, synovial sarcomas and other predominantly 
pediatric sarcomas and mesodermal tumors. T002 and T003 were 
then subtyped into 24 and 29 mesodermal subclasses, respectively 
(Supplementary Fig. 8).

Both mesodermal superclasses expressed epithelial-to- 
mesenchymal transition markers30 but otherwise had divergent expres-
sion programs. T002 sarcomas displayed high immune activation, 
with enrichment for pathways indicating a robust immune response 
(Extended Data Fig. 6b)31,32, more leukocytes33 and M2 macrophages 
(and M1 macrophages, to a lesser degree), along with high overall 
stromal content (Extended Data Fig. 6d).
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Fig. 1 | A platform for clustering and classification of RNA-seq data.  
a, Schematic representation of the steps involved in our RNA-seq tumor subtype 
identification protocol. We first built an extensive reference hierarchy of 
tumor and normal subtypes using RACCOON, a novel scale-adaptive clustering 
framework. This hierarchy was then used as a target for OTTER, an ensemble of 
CNN classifiers, which can be employed to identify multiple tumor and normal 
tissue components in samples from clinical practice. b, OTTER performance 

as a function of the number of sequenced reads. This is quantified as the 
hierarchical similarity (Methods) between the prediction probabilities obtained 
on subsampled data and the original sample (>1 × 108 reads). Values are presented 
as mean and standard deviation of six tumor samples with reads randomly 
subsampled five times each. Expression counts were obtained with a STAR + 
RSEM pipeline.
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For instance, T080 SARC IMMhigh is a small subclass of mixed  
solid tumors characterized by high leukocyte fraction, M2 macro-
phages and CD8+ cells. It is mostly composed of dedifferentiated  
liposarcomas (11/30) and undifferentiated pleomorphic sarco-
mas (9/30). Despite the variety of tumor subtypes, this class has a  
homogeneity of expression, possibly due to the immune transcrip-
tional signal and the lack of idiosyncratic profiles because of their 
undifferentiation.

The second mesodermal superclass (T003) involved high markers 
of ‘stemness’. Stemness markers were among the most significantly 
enriched gene sets (P < 0.001; Extended Data Fig. 6b)34, confirmed 
using three independent methods34–36 (Methods). As others have 
noted34, we observed a negligible relationship between stemness and 
tumor purity (Extended Data Fig. 6c). T003 could represent a class  
of mesodermal cancers of embryonic origin. This notion is supported 

by the inclusion of rhabdomyosarcomas and germ cell tumors. To 
further explore this, we obtained tissue from a fetal sample estimated 
to be 56 days in postconceptual age, sequenced 37,490 cells and com-
pared their expression profiles to that of the bulk-sequenced sarcomas. 
Overall, the T003 class of cancers was more similar to fetal cells, with 
some of its subtypes clustering immediately adjacent to in utero cells, 
supporting their early origins (Fig. 4c,d).

Taken together, these results support the idea that T002  
(STEMlow) is a class of malignancies with more committed differ-
entiation, characterized by high stromal content and an active  
immune profile. In contrast, T003 (STEMhigh) includes sarcomas 
with a more immature phenotype, possibly reflecting their embryo-
nic origin. It is likely that their common mesodermal lineage brings  
these solid tumors together while keeping them apart from the rest 
of cancer.
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A diagnostic and prognostic aid for childhood cancer
RACCOON identified clusters for most major types of pediatric  
leukemia, brain tumors and solid cancers. For nearly every recog-
nized pathological classification of pediatric cancer, there was a cor-
responding transcriptional cluster. For instance, in brain cancers, 
one can differentiate subtypes of medulloblastoma (T027), 1p/19q 
codel gliomas (T044), as well as those with/without IDH1 muta-
tions (T030 and T029), and ependymomas (T032), among others. 
Within the leukemias, one can differentiate BCR–ABL1-positive acute 
lymphocytic leukemia (ALL), as well as Ph-like variants (T127, T137, 
T139 and descendents) and distinct subclusters driven by fusions 
in CBFB–MYH11 (T145), PML–RARA (T147), TCF3–PBX1 (T135) and 
RBM15–MKL1 (T515), as well as acute myeloid leukemia (AML) with 
KMT2A internal tandem duplications (T153), KMT2A rearrangements 
(T159) and additional leukemia subtypes (Supplementary Fig. 8). For 
rarer subtypes, we saw evidence for emerging clusters that may be 
further subtyped with the inclusion of more samples. Both established 
and novel subtypes of childhood cancer can be assessed using this 
transcriptome-based approach.

Different histotypes were occasionally brought together into 
one cluster, indicating unexpected, shared expression programs or a 
common cell of origin. Within the hierarchy of brain tumors was a small 
(n = 12) but highly specific cluster of young childhood tumors (average  
age, 4.5 years). This cluster (T031) was composed of both central 

nervous system (CNS) and extra-CNS cancers with BCOR-associated 
gene expression programs37 (Extended Data Fig. 7a–d). Validating this 
annotation, all but one sample contained BCOR alterations, including 
fusions, partial deletions and internal tandem duplications9,38. Similarly, 
the sarcoma branch contained a class of small round blue cell tumors 
of mixed origin that included both sarcomas and brain tumors, with an 
average age of 12 years (T117). All had expression patterns reflective of 
CIC–DUX4 fusions (Extended Data Fig. 7e–h). Although these tumors 
can be difficult to diagnose39, our data support the notion that they are 
a distinct entity, independent of the location in which they arise40,41.

Using the same approach, we found four subtypes of neuroblas-
toma, the most common childhood extracranial solid tumor (Fig. 5a). 
These subtypes, which overlap with previously reported clusters42, have 
substantial differences in immune activity, differentiation level and sur-
vival (Fig. 5b). Furthermore, their effect on survival is independent of 
Children’s Oncology Group (COG) risk group and stage (Extended Data 
Fig. 8). Named based on the expression of previously established marker 
genes ERBB2 (T062), NTRK1 (T063), MYCN (T064) and TERT (T065), 
these subtypes may be rooted in the tumor’s lineage43–45 (Fig. 5g).  
The ERBB2-overexpressing subtype is highly differentiated, with high 
immune activity, and reflected a neural crest cell/mesenchymal iden-
tity. Conversely, the TERT subtype is associated with a sympathoadrenal 
identity and has the highest level of stemness (Fig. 5g). These subtypes 
were only partially correlated with the established COG risk groups46, 
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which are primarily based on histology and MYCN copy number. Of the 
35 patients in the MYCN expression class, 25% (9/35) were not previously 
identified as MYCN amplified by standard testing but still maintained 
significant enrichment of downstream MYCN amplification pathways. 
That is, these patients with neuroblastoma had the transcriptional  
fingerprint of activated MYCN (Fig. 5h) yet would have been mis-
classified by conventional cytogenetics47,48.

Osteosarcoma, the most common bone tumor of childhood, was 
also readily subtyped using this method (Fig. 5i)49. We identified four 
osteosarcoma subtypes, separating by bone and cartilage development 
expression. The four subtypes also led to significant differences in 
prognosis (Fig. 5j). These include: a class characterized by osteoclast 
differentiation with good prognosis (T074); a second high-survival-rate 
class with enrichment of osteoblast differentiation and direct ossifica-
tion (T071); a chondroblastic group with low to intermediate survival 
rate (T073); and a bona fide osteoblastic osteosarcoma class, with the 
poorest survival (T072). This demonstrates that whole-transcriptome 
profiling can unlock stratification with prognostic utility.

Neural networks for diagnosing childhood tumors
Having determined that RACCOON can be used as a diagnostic  
and prognostic aid for childhood cancer, we validated an ensemble  
CNN (OTTER) to prospectively classify new patients’ tumors.  
OTTER outperformed current alternatives (Supplementary Table 6), 
reaching >0.99 mean area under the precision recall curve (AUCPR) 
across major pediatric malignancies while maintaining excellent  
performance even for minor subtypes deep in the hierarchy (Fig. 6a).

Tumor-derived RNA from childhood cancer patients enrolled in an 
ongoing precision medicine program were sequenced (163 tumors/132 
patients)50. OTTER was applied to this held-out validation cohort, 
and classifications were compared to the pathologists’ diagnosis 
(Supplementary Table 7a). These patients are representative of the 
hard-to-cure tumors seen at most large childhood cancer centers: 
44% (72/163) were relapsed, refractory or metastatic disease; and  
60% (97/163) were obtained after one or more therapies.

OTTER’s tumor classification was concordant with the patholo-
gists’ diagnosis for 65.6% of the cases (Fig. 6b). In an additional 16.6% 
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of cases, we confirmed the diagnosis even in the absence of a corres-
ponding tumor type in our reference set by comparing their class 
assignment to similarly labeled samples in both the reference and 
the validation cohort (Methods). Of note, the diagnosis was updated 
for 11 cases from nine patients (additional 6.7% of cohort), including 
four BCOR-rearranged sarcomas, a kidney clear cell sarcoma with a 
BCOR internal tandem duplication (ITD)51, two infant lymphoblas-
tic leukemias with MLL partial tandem duplications and two mega-
karyoblastic leukemias with sarcomatous components. Altogether, 

OTTER’s classification was correct, in that it either matched or refined 
the pathologists’ diagnosis, for 88.9% of cases.

Because OTTER’s prediction probabilities are multiclass (samples 
can be assigned to more than one class), we could identify samples  
with high contamination by non-tumor tissue. Normal tissue expres-
sion was the dominant profile in 4% (6/163) of the samples and present 
to a lesser degree in an additional 4% (7/163) of tumors. Overall, there 
was no correlation between tumor cellularity and the confidence to 
which the tool assigned each specimen. Indeed, we confirmed the 
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Fig. 6 | Diagnostic classification of childhood tumours. a,b, Classification 
scores obtained on the test set, broken down by hierarchy level (a) and by a subset 
of representative pediatric tumor classes (b). These include accuracy (dark blue), 
AUCPR (orange), precision (blue), recall (green) and hierarchical similarity H 
(dashed gray). All averaged scores were calculated as micro (m) averages. The 
total reference population of each class is also shown as shaded bars (blue).  
c, Classification results obtained with the KiCS validation dataset. In blue is the 
fraction of confirmed diagnoses in the absence of reference samples; in cyan are 
confirmed diagnoses; in orange are samples that led to an update in diagnosis; 
and in gray are inconclusive cases. The internal circle fractions indicate samples 
with normal tissue contamination (empty circles) or low quality (dotted 
circles). d, Majority class assignment for patients with samples taken at multiple 
timepoints. Each sample is shown as a dot, with size proportional to the class 
probability. The full circle represents the majority class at the first hierarchical 
level; bottom half circles in transparency show further subtypes. On the right, 

the name of the transcriptional family assigned to the first sample is shown in 
short form, except for those where normal contamination was dominant, in 
which case the next available sample is used. Samples with multiple separate 
primaries are not shown (Supplementary Fig. 11). e, Classification probabilities 
for neuroblastoma samples, grouped by their majority assignment. Larger bars 
represent the assignment to classes to the first level of the hierarchy; thinner 
bars represent the confidence scores of neuroblastoma subtypes. Samples for 
which MYCN amplification was clinically identified in a pre-therapy sample are 
marked with a red star. Pre-therapy samples are marked with a gray caret. The 
lineage score for each sample and their reference group median are shown at the 
bottom as dots and dashed line, respectively. f, Class assignment probabilities 
for osteosarcoma samples, grouped by their majority assignment. Larger bars 
represent the assignment to the osteosarcoma or alternative classes; thinner bars 
represent the confidence scores of osteosarcoma subtypes. Pre-therapy samples 
are marked with a gray caret.
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diagnosis of 89% (16/18) of the samples with <50% tumor purity. Nine 
percent (15/163) of the entire cohort showed signs of necrosis or other 
quality-related issues. Six samples (4%) remained inconclusive due 
to the current lack of a comparable match in the reference hierarchy.

To evaluate the robustness of OTTER’s predictions over time, we 
sequenced multi-timepoint samples (for example, primary meta stasis 
pairs). Twenty-one patients had more than one tumor sequenced 
(Supplementary Fig. 11). Eighty-six percent of these cases maintained 
consistent class assignments over time (Fig. 5c), with the excep-
tion of two Wilms tumors with contamination as well a SMARCB1- 
associated tumor, a subtype currently absent from our reference. 
Taken together, OTTER’s tumor type predictions are highly concordant  
with those of pathology, can help to clarify ambiguous diagnoses  
and stay consistent across time even as the tumors evolve.

From this temporal analysis, the only tumor to markedly switch its 
transcriptional profile at relapse was a neuroblastoma (0092 in Fig. 6d).  
To explore this, we measured variability in class assignment of all  
neuroblastomas (including those with one timepoint). Individual 
neuroblastomas expressed multiple transcriptional programs at the 
same time (Fig. 6e). More than half of the available neuroblastoma  
samples (11/21) comprised more than one subtype (with >2% confi-
dence). Neuroblastomas that had been clinically subtyped as MYCN 
amplified at diagnosis displayed a highly variable MYCN signature  
at relapse (subtype T077). The heterogeneous assignment of neuro-
blastoma subtypes seems to be unique among well-characterized 
tumors. In contrast, all but one of the sequenced osteosarcomas were 
assigned to a unique subtype (Fig. 6e). Neuroblastomas can maintain 
distinct states43,44. Our data indicate that neuroblastomas’ plasticity 
can be observed and quantified in vivo without single-cell analysis.

Discussion
Pediatric cancers are the most common cause of death by disease among 
children in the developed world. Our data quantify their heterogeneity 
and provide a molecular definition for every major type of childhood 
cancer. Because these definitions are based on transcriptional profiles 
rather than mutations or methylation signatures52, they represent the 
active state of the disease. The recurring theme that emerges from this 
work is the transcriptional variability of childhood cancer. Childhood 
cancers are rooted in fewer major tumor classes—85% are in only six 
major classes—but then display deeper, more complex hierarchies. This 
suggests that many childhood cancer types share a common ancestry 
and then differentiate into a multitude of tumor subtypes.

Childhood tumors were less likely to fully match the stereotypic 
expression profile of their subtype. That is, there was greater tran-
scriptional diversity among individual childhood tumors, even those 
belonging to the same subtype. Although bulk sequencing does not 
permit direct cell-to-cell comparisons, we can speculate that this diver-
sity reflects heightened inter-cellular heterogeneity in pediatric cancer.  
Elevated transcriptional diversity may come from the embryonic 
stem cells from which some childhood tumors have been shown to 
be derived53. Like embryonic cells54, childhood cancers may use their 
‘noisy’ expression to dynamically adapt their transcriptional programs.

Our assessment of childhood cancer transcription revealed 
other features that similarly pointed toward the developmental roots  
of many, if not all, pediatric tumors. Sarcomas are a broad class of 
tumors diagnosed disproportionately in the first three decades of 
life. They separated from all other cancers at the top-most level of our 
cancer hierarchy in two distinct groups. One of these (T003) was mostly 
made up of multiple childhood sarcomas, all segregating because  
of strong features of stemness and stem-like expression programs.

The transcriptional variability of childhood cancers is in stark con-
trast to the quietness of their genomes, generally harboring fewer sub-
stitution mutations at diagnosis55. This low mutation burden is usually 
attributed to a limited number of cell divisions after fertilization and 
limited exposure to mutagens. Another possibility is that transcription 

itself facilitates or directs DNA repair. We observed that most DNA 
repair pathways are overexpressed in childhood tumors (Extended 
Data Fig. 9a and Supplementary Table 8); we also observed a signifi-
cant correlation between transcriptional entropy and enrichment of  
DNA repair (Extended Data Fig. 9b). This includes overexpression 
of base excision repair pathways, which can regulate transcriptional 
fluctuations56, similar to what we observed in childhood tumors.

Having quantified their unique transcriptional features, we deve-
loped a diagnostic tool for childhood cancer. Using CNNs trained on 
455 transcriptional classes, we matched or refined the pathologists’ 
diagnosis for 89% of patients. This tool is blinded to tumor site, mor-
phology or immunophenotype and can accurately classify ~90% of 
childhood cancers using a small number of reads (Fig. 1b) and comple-
ments a DNA-methylation-based classifier for CNS tumors (Methods 
and Supplementary Table 7b)52,57. The tools described here also have 
prognostic utility, one example of which is in osteosarcoma where 
four subtypes with clear differences in survival were found. Instead 
of giving each tumor a single discrete label, our multiclass models 
can reveal expression of more than one subtype within a bulk tumor. 
This was the case for more than 50% of neuroblastomas, even switch-
ing dominant lineages after therapy. Our findings support current 
tumor-agnostic approaches, aiming to develop treatment strategies 
based on tumor biology58 rather than histology. These tools, and the 
taxonomy of cancer that underpins them, will continue to improve  
as more data accrue, yielding more accurate diagnoses and finer- 
grained subtype details—for every 10% increase in samples, up to  
an additional 10% of tumor subclusters are found (Supplementary  
Fig. 12). Thus, what is presented here is the first iteration of an ever- 
learning tool. Looking forward, our results indicate that this tool has 
the potential to grow such that it provides diagnostic or prognostic 
utility to every child with cancer.
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Methods
KiCS enrollment and ethics declaration
The SickKids Cancer Sequencing (KiCS) Program is a prospective 
study of a demographically diverse population of children and 
adolescents and young adults (AYAs) with refractory, metastatic, 
relapsed or rare cancers, as well as children with unresolved suspi-
cion of cancer predisposition. It was launched in April 2016 and is an 
ongoing study. Guardians or capable patients are guided through 
an informed consent discussion with a trained genetic counsellor 
or pediatric oncologist. KiCS has been approved by The Hospital 
for Sick Children’s Research Ethics Board. The first trimester human 
fetal tissue was collected from an elective termination of pregnancy 
procedure at Addenbrooke’s Hospital through the ethically approved 
Wellcome-MRC Cambridge Stem Cell Institute and Department of 
Clinical Neurosciences tissue bank (REC-96/085). Written informed 
consent was given for tissue collection by the patient in accordance 
with the Declaration of Helsinki 2000.

Reference dataset
We used the UCSC Treehouse Childhood Cancer Initiative Compen-
dium (version 9, March 2019)9 as a reference dataset to build the hier-
archy of subtypes and train the ensemble CNN classifier. This cohort 
includes 11,750 tumor samples from TCGA16, TARGET17 and other 
contributing institutions, prepared with either poly(A) selection or 
ribosomal depletion. Gene expression counts from the STAR + RSEM 
Toil RNA-seq pipeline59 of samples in the compendium are publicly 
available and cover more than 58,000 genes, raw or normalized by 
log2 transcripts per million (TPM). The same pipeline was applied to 
any other data in this publication. Alternatively, counts obtained with 
Kallisto were used for performance benchmarks. To expand the pedi-
atric reference, we added 313 further samples from St. Jude Children’s 
Hospital Pediatric Cancer Genome Project (PCGP)18, run through the 
same pipeline after filtering them by alignment quality. While build-
ing the subtypes hierarchy, we removed samples with particularly low 
purity but kept them to boost the ensemble CNN training. Ribodepleted 
samples showed consistent batch effects across tumor types during the 
clusters search. We, thus, chose to exclude them from the rest of the 
analysis and the CNN training; ribodepleted-only classes were removed 
from the hierarchy. Finally, we added 1,735 normal tissue samples with 
the best coverage and quality scores from 51 different organ sites 
from the GTEx project19 to the dataset. To avoid degradation in the 
output from tumor samples with normal contamination within the 
Treehouse cohort, the tumor and normal datasets were kept separate  
at the first stage of the clustering and merged later as separate branches 
of the classification hierarchy.

In input to the clustering algorithm, genes mapping to non-coding 
sections of the RNA were removed. Among these remaining, only  
genes with high variability, accounting for 99% of the cumulative  
variance on the full cohort, were kept. This reduced the feature space 
to 18,010 functional genes and pseudogenes, allowing us to speed up 
the rest of the analysis with a negligible loss of information.

Diagnoses and genomic markers reported by the sharing institu-
tions were used, when available, as a reference for tumor type compari-
sons and the annotation of clusters.

Quality control and batch effects
Samples included in the final version of our reference cohort were 
pre-filtered by standard quality control parameters by the groups 
that generated the data9,18,19. We included GTEx samples with a high 
number of sequenced reads (as a proxy for coverage). St. Jude samples  
from the PCGP cohort were filtered based on TPM distribution.  
Samples were ranked based on the number of protein-coding  
genes found to have zero expression (TPM = 0) and excluded if more 
than 25% of their protein-coding genes were not expressed. This 
resulted in an improvement in RACCOON’s clustering and clarity  

of each cluster (Supplementary Fig. 13). Any St. Jude sample already 
present in the Treehouse data was removed. This left us with 512  
samples from the St. Jude cohort—62% of the total available.

Differential expression and gene sets analysis
log2 TPM-normalized counts were used for clustering, classification and 
map projections. For differential expression analysis, TMM normali-
zation and the negative binomial generalized log-linear model fitting 
from EdgeR60 version 3.30.3 were used instead. Gene set enrichment 
analysis (GSEA) and single-sample GSEA (ssGSEA) were carried out 
with gseapy61 version 0.9.5 in Python version 3.6.9 and GSVA62 version 
1.36.3 in R version 4.0.2. ssGSEA-based scores were also calculated with 
gseapy version 0.9.5 on TPM-normalized counts and scaled between 
0 and 1 to assure consistency in the comparisons. They were used as 
part of stemness, immune activity and neuroblastoma identity scores 
(see Stemness score, Immune deconvolution and activity score and 
Neuroblastoma cell lineage score in Methods for details). The two-sided 
Mann–Whitney U-test was used when evaluating significance in com-
paring these scores and any other distribution between paired groups 
of samples throughout the text.

Plots and diagrams were produced with Matplotlib63.

Survival analysis
Survival analyses and log-rank tests were carried out with lifelines ver-
sion 0.21 (ref. 64). Where available, outcomes were defined based on 
overall survival times provided by the sharing institution. A Cox survival 
regression of neuroblastoma subtypes was performed with the same 
library on 161 neuroblastoma observations, of which 81 were censored.

Multilevel clustering
Given a set of data points, RACCOON removes low-information fea-
tures, reduces their complexity with a non-linear dimensionality 
reduction algorithm and finally identifies clusters with a density-based 
approach. The search is continued depth-first for each of the clusters 
identified iteratively. The search is terminated only when further 
splits would lead to a particularly suboptimal value of the objective 
function or the class population is lower than a pre-set bound (for 
example, 25–50 samples). The features removal cutoff, the number 
of neighbors employed by uniform manifold approximation and 
projection (UMAP)65 and the clusters search parameter (for example, 
maximum clustering distance parameter in DBSCAN) are optimized 
by maximizing a clustering quality score. For this project, the tunable 
parameters were optimized with a grid search, and the total silhouette 
coefficient of the dataset66 was set as the objective function. This 
score quantifies the quality of clustering by calculating the ratio 
between the clusters cohesion and their separation. Ranging between 
−1, when all points are incorrectly assigned, and 1, when all points  
are well assigned, we set here 0 as the minimum threshold for accept-
ing a set. In a scenario where the best combinations of parameters 
found still leads to a negative score, the cluster under scrutiny is  
not split.

We applied RACCOON to our extended dataset to build a hierar-
chical tree of tumor and normal subtype clusters. The number of 
final (reduced) dimensions was empirically set to 12, a choice that 
proved to be a good compromise between accuracy and computa-
tional cost. A population cutoff of 25 was applied to stop the search, 
and nodes with fewer than ten samples were pruned, because their 
annotation and training for the classifier would be too unreliable. This 
method initially yielded more than 700 individual clusters. A subset of 
low-population leaf nodes was removed after manual annotation, for 
the lack of sufficient biological and gene expression information to 
support any finding, together with classes populated exclusively by 
ribodepleted samples. This process left us with a total of 455 clusters 
(406 tumor and 49 normal tissue classes, respectively), of which 303 
are non-overlapping independent terminal (leaf) nodes.
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Normal tissue inclusion
Multilevel clustering was applied independently to the normal tissue 
samples and malignant subsets. Normal and tumor samples from 
the same organ would have been grouped in common classes at the 
highest level if they had been mixed. Clustering quality decreases, as 
less aggressive or low-purity tumors can be difficult to separate from 
healthy normal samples.

During training, this choice forced OTTER to learn high-level 
features that distinguish normal tissue from neoplasms, inde-
pendently from their anatomical location. This boosted OTTER’s 
ability to recognize tumor populations in low-quality samples,  
as the tumor–normal separation is prioritized in the hierarchy.  
Similarly, we expect generalization to unseen normal tissues to also 
be improved.

Annotation
Clusters obtained with RACCOON were annotated based on their  
most characteristic transcriptional features compared to the closest 
members of their hierarchical family. Differential gene expression 
and GSEA were carried out to identify each cluster’s defining gene and 
pathway expression. Limited clinical information, including age, sex 
and a diagnostic label, were available for each sample. All 455 separate 
classes were first annotated to assign a unique label (a code and a 
name). We then extended the annotation for the five major families  
of pediatric tumors: CNS, leukemia, neuroblastoma and the two  
mesodermal classes, as well as the branch stemming from the healthy 
normal samples. More details on the annotation of these groups  
can be found at https://rna-atlas.github.io/.

Entropy calculations
Expression variance and its derived quantities (for example, the coeffi-
cient of variation) could be used as a proxy of variability; however, they 
fail when dealing with multimodal or discontinuous distributions. 
Shannon entropy S is a much more appropriate and robust measure. It is 
a generalization to Boltzmann’s thermodynamics entropy; it quantifies 
the information content or the randomness of a given distribution23. 
It is defined as follows:

S = −∑
i
PilogPi

where Pi is the probability of an event i, in our case the probability that 
a certain gene will lead to a specific expression count.

Starting from TMM-normalized data, which already account for 
the skew introduced by extreme values across the population, the 
expression was standardized along genes to limit heteroscedastic-
ity. Being additive, Shannon entropy cannot be naively measured on 
groups with different populations, and it requires enough samples 
to approximate a continuous distribution. In our case, this holds 
true for a good number of classes but not for the smallest leaf nodes. 
We, thus, first approximate the expression distribution of every 
single gene independently with a fixed-bandwidth Gaussian kernel 
density estimation and then extract the probabilities for Shannon 
entropy from the estimated distribution on a 100,000-points grid. 
Higher-resolution grids approach the limit of differential entropy 
and approximate the integral better, yet they lead only to marginal 
changes and increase the computational cost considerably. A mesh to 
250,000 points led to a change in entropy of less than 2%, confirming 
that our choice was close to convergence. The entropy calculation was 
limited to a subset of more than 14,000 highly variant genes, by filter-
ing those with both consistent low expression across samples and low 
entropy across all classes. The final values obtained for each gene and 
each class were divided by the median entropy of the normal tissues 
cohort class N000. All calculations were carried out with scikit-learn 
0.22.2.post1(ref. 67).

RNA-seq expression data are commonly approximated by a nega-
tive binomial distribution, which accounts for overdispersion in its 
mean–variance relationship. The coefficient of variation is a popular 
measure of mean independent dispersion; however, it still relies on 
variance and, thus, inherits all its shortcomings when attempting to 
quantify transcriptional noise.

We observed a fair correlation between entropy and mean expres-
sion across all groups (Pearson r = 0.68). We, thus, fit a linear model on 
the entropy and adjusted the score to account for its dependency on the 
median expression (Supplementary Fig. 14). The coefficient of deter-
mination R2 was 0.46, suggesting that the mean dependent component 
accounts for less than half of the total entropy, and transcriptional 
noise within and across tumor types cannot be entirely explained by 
differences in expression levels alone. This adjusted entropy (S) was 
used throughout the manuscript.

PaWS calculations
Although entropy entails the overall variability of gene expression 
within a population, part of this can be translated into a different 
pattern of activation of relevant biological pathways, thus defining 
different tumor types. This inter-tumoral heterogeneity is explicitly 
accounted for by the cluster hierarchy itself. We can define a score 
based on the number of offspring nodes that a specific group gener-
ates and measure it on the classes that we identified. We call this PaWS 
and define it as follows:

PaWS (n) = |Ln|
|L|

log (|root|)
log (|n|)

where n = {sample1, sample2,…}  is a set of samples identified as a  
cluster or node; L is the set of all leaf nodes l—that is, all the childless 
nodes, Ln  is the set of leaf nodes that are offspring of n; and root is  
the hierarchical tree root, a set containing all our dataset samples.  
The PaWS of n is, thus, defined as the ratio between the cardinality (|Ln,|) 
of Ln and the cardinality of L – that is, the number of leaf nodes that  
are offspring of n, over the total number of leaf nodes, weighted by  
the inverse of the log population ratio of n. This last term was added  
to account for the fact that smaller clusters will have less probability 
to be split by the algorithm.

Correlation between heterogeneity scores
The relationship between these quantities is not trivial; we observed 
a weak correlation (Spearman rank test coefficient = 0.355, 
P = 1.120 × 10−5) between median entropy and PaWS score, after removing  
all the leaf nodes, to avoid including clusters with possible subtypes  
but insufficient population to be split by the algorithm. Entropy is thus  
a good proxy for intra-cluster expression disorder, as it accounts for 
that part of expression differences within a population that are not 
coherent enough to be translated into clear subtypes and yet not able 
to disrupt the overarching patterns that define the parent class.

Stemness score
A unified stemness score was calculated as the average among 
CytoTRACE35 single-cell stemness score, mRNAsi36 and the ssGSEA 
score from Miranda et al.34. The score was then normalized for each 
inter-tumor type comparison.

Immune deconvolution and activity score
The immune activity score was calculated as the average between 
Reactome immune system31 ssGSEA score and Gene Ontology immune 
activity32 score. The result was averaged with methylation-derived 
leukocyte content fraction by Thorsson et al. (218)33 in TCGA samples 
where the information was available. The score was then normalized 
for each inter-tumor type comparison. Immune deconvolution scores 
and immune cell type ratios were obtained with CIBERSORT68.
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Neuroblastoma cell lineage score
A unified neuroblastoma cell lineage score was calculated by first  
averaging separately neural crest-like and mesenchymal identity 
ssGSEA scores and adrenergic identity scores from three different 
publications43–45. For each sample, the final score was obtained as  
the difference between the mesenchymal/NCC-like unified score and 
the adrenergic unified score, and it was scaled to range between 0 
(more adrenergic) and 1 (more mesenchymal).

Single-cell RNA-seq
Fetal age (post-conception weeks (PCWs)) was estimated using the 
independent measurement of the crown rump length (CRL), using the 
formula PCW (days) = 0.9022 × CRL (mm) + 27.372.

Paired femora, tibiae and fibulae were dissected from the fetal hind 
limbs by a specialist bone and soft tissue pathologist (P.B.) under a micro-
scope using sterile microsurgical instruments. The femora were further 
dissected into proximal and distal halves, to give eight samples in total 
(paired proximal and distal femora, paired tibiae and paired fibulae). Each 
sample was then processed into single-cell suspensions. In brief, tissue 
was digested in a 5 µg ml−1 Liberase TH working solution prepared from 
Liberase TH powder (Sigma-Aldrich, 5401135001) and 1× PBS on a shak-
ing platform (750 r.p.m.) at 37 °C for 30 minutes. The tissue was gently 
agitated using a P1000 pipette after 15 minutes. Then, 5 ml of 2% FBS in 
PBS was added to stop the dissociation, before second-stage digestion 
with 0.25% trypsin solution for a further 30 minutes at 37 °C, with pipette 
agitation every 5 minutes. Cells were then spun down at 750g at 4 °C  
for 5 minutes and resuspended in 50–200 µl of 2% FBS in PBS. Fetal cells 
were loaded for single-cell RNA-seq directly after sample processing.

Single-cell suspensions from the eight samples were loaded onto a 
separate channel of a Chromium 10x Genomics Single Cell 3′ v2 library 
chip as per the manufacturer’s protocol (PN-120233), aiming for a cell 
capture recovery of 3,000–5,000 cells. cDNA sequencing libraries were 
prepared according to the manufacturer’s protocol and sequenced on 
an Illumina HiSeq 4000 (2 × 50-bp paired-end reads).

Raw sequence reads in FASTQ format from fetal samples were 
processed and aligned to the GRCh38-1.2.0 human reference transcrip-
tome using the Cell Ranger version 2.1.1 pipeline69 (10x Genomics) with 
default parameters.

The resulting expression matrices were processed with SoupX 
version 1.3.0 (ref. 70) to estimate and remove cell-free mRNA contam-
ination before analysis. Cells with fewer than 300 genes and more  
than 7,500 genes were filtered, as well as those in which mitochondrial 
genes represented 10% or more of total gene expression. A quantita-
tive estimation of cell cycle stage was performed on the remaining  
cells with Seurat version 3.0 (ref. 71). Log-normalization was then  
performed before data scaling, which used cell cycle score, mito-
chondrial gene expression level and the total unique molecular  
identifiers (UMIs) per cell as regression variables.

We normalized the raw expression data to log2 (TPM + 1) and ran-
domly selected 25,000 samples. The resulting dataset was merged 
with the bulk RNA-seq sarcoma data (T002 MESODM IMMhigh  
and T003 MESODM STEMhigh). A low-information filtering step  
was applied, to boost the signal-to-noise ratio and partially remove 
batch effects, before projecting the data to a lower-dimensionality 
space with UMAP65. The nearest neighbors cutoff was set as the square 
root of the total population. The centroid distance between T002 and 
single-cell data was constantly higher than that between T003 and the 
single-cell cluster, independently of how the dimensionality reduction 
was parametrized over a grid of combinations (Supplementary Fig. 15).

Classification
We built a set of mono-dimensional CNNs, called OTTER, which takes 
the RSEM gene expression reduced output (18,010 log2 TPM genes) as 
input and returns the membership probability to any or multiple of 
the 455 hierarchical classes.

We trained these networks on the full reference cohort of more 
than 13,000 samples, which includes samples at a range of sequenc-
ing depths—a computationally expensive task. The resulting model 
proved markedly more accurate and robust than alternative classifi-
cation methods, such as k-nearest neighbors, which are affected by 
tears, deformations and the partial loss of meaningful distances in the 
dimensionally reduced space, and have limited flexibility when dealing 
with multiple tumor components.

To identify optimal architectures, we emplyed Hyperopt, a Bayesian  
hyperparameter optimization library based on a Tree-structured 
Parzen Estimator (TPE)72. The micro-F1 (µF1) score was chosen as the 
objective function to guide the search. We enriched this group of 
models with a number of manually tuned architectures.

All models included one-dimensional convolutional (CV) layers  
followed by fully connected (FC) layers. The number of filters of CV 
layers was tuneable and shared across layers, and so was the kernel 
size. Each CV layer was followed by batch normalization and max  
pooling with fixed size 4 and stride 2. The size of hidden dense layers 
was also tuneable and halved at every successive layer, and dropout  
was activated at parametrizable percentage. The loss function  
was binary cross-entropy. Adadelta was set as optimizer with a  
starting learning rate of 0.001 and early stopping.

The top-scoring models among the pool of all candidates were 
subject to five randomized rounds of five-fold cross. The splitting into 
train and test sets was stratified to assure a proportional coverage for 
every class, and early stopping after three epochs was activated to 
avoid overfitting. Five candidate models were then selected according 
to their different performances on a set of scores including macro-F1 
(MF1) and macro precision recall area under the curve (MAUCPR).

The final classifier was built as an ensemble average of a subset of 
these models, an unweighted arithmetic mean of three. The ensemble 
classifier led to an improvement in most scores while limiting the 
shortcomings of each single model and adding robustness to the 
final predictions. Finally, the models were trained on all available 
samples, with an adequate number of epochs to avoid overfitting 
for each separate case. A comparison with alternative tumor type 
classification RNA-seq models available in literature can be found in 
Supplementary Table 6.

The models were built as multilabel and multiclass; both the input 
labels and the output membership assignment are not exclusive to a 
single class. A post-processing step ensures consistency among the 
probabilities of classes within a family: if the classifier assigns higher 
probability to an offspring node than to its parent, the average of the 
two is assigned to both classes, and sibling nodes are adjusted accord-
ingly. This correction is then propagated upward along the hierarchy.

The scores in output from the final ensemble are not binarized to 
allow the user a full picture of confidence scores. To make up for the 
strong class imbalance in the training dataset, we recalibrated these 
output probabilities.

We identified a binary classification cutoff that maximizes an 
adapted Youden J statistic (precision + recall) and then transformed 
the output scores linearly so that this cutoff value falls at 0.5 of the 
final probability. Although this change does not affect markedly the 
resulting output (.998 cosine similarity, .957 hierarchical similarity 
on the validation cohort), it helps relieve some of the overfitting on 
minority classes. The median cutoff was .585 (.651 for highest level 
classes, .425 for the lowest level, .543 for leaf nodes), suggesting that 
this is an overall balanced classifier.

The input data features were ordered by correlation following a 
quick agglomerative clustering on their log2-normalized expressions. 
The input gene arrays are scaled to a 0–1 range, and the labels were 
transformed to a one-hot Boolean encoding.

All models were built with Keras version 2.2.2 and TensorFlow73 
version 1.10.1 backend. All code was run with Python version 3.6.9, 
and model training was run on our local high-performance computing 
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machine with eight Xeon E5-2670 v2 @ 2.50-GHz or Xeon Gold 6140 
CPU @ 2.30-GHz cores and 64 GB of RAM.

Comparison to DNA methylation-based classifier
We compared the results of our transcriptional classifier to a DNA 
methylation-based classifier52 for a set of CNS tumors. In a previous 
work57, we profiled 252 high-risk pediatric cancers through multiple 
sequencing technologies. Sixty-three of these are CNS tumors with data 
from both DNA methylation and RNA-seq and can be directly compared.

After a manual curation, the methylation classifier matched these 
tumors to their presenting clinical diagnosis in 86% of the cases. The 
remaining 14% are either matched to a wrong subtype but within the 
correct parent family or do not match the expected subtype. The two 
classifiers agree in almost all of these cases, within the limits of tumor 
types available in the respective reference datasets, and complement 
each other in the few exceptions.

The dataset includes a number of tumor subtypes that are rare 
or absent in our reference cohort (atypical teratoid rhabdoid tumor, 
diffuse midline gliomas (DMGs) and meningiomas); for the purpose of 
this comparison, consistency in their assignment to a transcriptionally 
similar subtype (for example, all DMGs that were assigned to the same 
proximal subtypes of high-grade gliomas) was considered a match.

Among the 8% of samples matched only to the parent family 
according to DNA methylation, OTTER, our transcription-based clas-
sifier, could correctly identify the subtype of three samples: a medullo-
blastoma, called as retinoblastoma by DNA methylation; a low-grade 
glioma, instead of a high-grade glioma; and an ependymoma, whose 
methylation profile was reflecting immune infiltration. In two cases, the 
classifiers were in agreement, in spite of a mismatch with respect to the 
pathologist diagnosis: an IDH wild-type glioma and a medulloblastoma 
of the G3 subtype. Finally, there are three cases in which the transcrip-
tional classifier fell short, where the DNA methylation matched the 
correct subtype: an ependymoma, which was not recognized by OTTER 
due to low purity and high immune infiltration, and two atypical teratoid 
rhabdoid tumors, a subtype that is absent in our RNA-seq reference.

Both classifiers can provide highly accurate predictions and  
complement each other in the most complex cases.

Hierarchical similarity score
To evaluate the accuracy of predictions within the hierarchical frame-
work, we employ the hierarchical similarity score (H), a union/intersec-
tion score based on the graph information content similarity (SimGIC) 
that measures the proximity of two points along the class tree while 
accounting for its structure and populations:

H (v1, v2) = 1 − Δu/i (v1, v2)

=
∑n∈nodes(v1 )∩nodes(v2 )

w(n)

∑n∈nodes(v1 )∪nodes(v2 )
w(n)

=
∑n∈nodes( 1⃗ ) w(n)min(v1(n),v2(n))

∑n∈nodes( 1⃗ ) w(n)max(v1(n),v2(n))

where v1, v2 are the membership assignment probability vectors of  
two samples; nodes(vx) is the list of nodes or classes activated in  
such vectors; nodes ( ⃗1 ) is the list of all nodes; and w(n) are the nodes’ 
weights. These are calculated as information content—that is, the 
probability of a sample falling into the lower node connected to the 
edge, which can be approximated to the class frequency of observa-
tions in the training dataset:

wSimGIC (n) = −logp (n)

We also define the partial hierarchical similarity score (η), which 
looks only at the branches active in the ground truth while disregard-
ing false positives:

η (v1, v2) = 1 − δu/i (v1, v2)

=
∑n∈nodes(v1 )∩nodes(v2 )

w(n)

∑n∈nodes(v1 )
w(n)

=
∑n∈nodes(1⃗) w(n) min(v1(n),v2(n))

∑n∈nodes(1⃗) w(n) v1(n)

Sequencing depth benchmarks
Stochastic subsampling of the total number of reads was repeated at set 
intervals for five chosen samples from the KiCS cohort—five times with 
different random seeds for each set threshold. Each original sample 
had at least 108 reads (on paired FASTQ files), and its OTTER output was 
set as ground truth. Accurate classification (.85 with RSEM, .75 H with 
Kallisto) can be obtained with OTTER with 1 million reads. Although 
less accurate, Kallisto is considerably faster (Supplementary Fig. 6).

Library preparation and storage benchmarks
OTTER was trained on a dataset of poly(A) sequencing samples from 
fresh-frozen (FF) tissue. To evaluate its generalizability to alterna-
tive library preparation techniques, we tested its performance on a 
set of 247 samples from the Treehouse Childhood Cancer Initiative 
compendium version 9 (ref. 9) treated with ribosomal depletion (Sup-
plementary Fig. 16). The closest possible tumor class to the provided 
diagnostic label was set as ground truth. Tumor subtypes that were 
absent in our reference were removed from this analysis; however, 
tumors lacking a matching class in the atlas, but with a consistent 
population in the reference cohort, were included. As an example, 
gastrointestinal stromal tumors, which are consistently found in the 
T078 SARC EPITH/KIT class but lack for now their own subgroup due to 
a limited population (n = 6), were included, and so were samples with 
myofibromatosis. The classifier can still identify the correct tumor 
type, albeit with lower confidence. Although ribdopleted libraries are 
somewhat compatible with our classifier, the results should be treated 
cautiously, and the user should be aware that different tumor types  
will have an unequal impact on the classifier’s performance.

Formalin-fixed, paraffin-embedded (FFPE) is commonly used 
for long-term storage of samples, yet degradation of the DNA and 
RNA in FFPE samples has been described in literature, and most 
molecular-based analyses seem incompatible with FFPE data74,75 
Information on the storage method is available for only 93 of the 247 
samples in the Treehouse cohort. We then repeated the analysis on 
a smaller cohort of matched FF and FFPE samples (n = 52 pairs). This 
set includes a slice of the KiCS cohort and samples from two different 
publications75,76. We also stratified the FFPE tumors by library prepara-
tion to demonstrate that the impact of library preparation and storage 
are additive (Supplementary Fig. 16).

Expanding the tumor atlas
We investigated the behavior of OTTER in inference on data from tumor 
types missing from our transcriptional phenotypes’hierarchy, and we 
measured the effect of adding such data to the RACCOON clustering. 
To this end, we selected 19 atypical teratoid/rhabdoid tumors (AT/RTs) 
from an unseen dataset, which was not used for clustering or training, 
and ran them through the current version of OTTER. Eighteen AT/
RT snap-frozen tumor materials and clinical information were col-
lected at The Hospital for Sick Children or through an international 
collaborative network with consent as per protocols approved by the 
hospital research ethics boards at participating institutions. All AT/
RTs had negative BAF47 immunohistochemistry stain and biallelic  
SMARCB1-inactivating alterations as confirmed with FISH, MLPA, tar-
geted Sanger sequencing or high-throughput sequencing analyses.  
RNA-seq libraries were prepared using the Illumina TruSeq RNA  
Sample Preparation Kit for poly-adenylated mRNA selection and 
sequenced at the Centre for Applied Genomics77. To these, we added  
a single AT/RT sample from the KiCS cohort.

Our reference cohort currently contains three samples that have 
been labeled as AT/RT. Two of these are found in T040 GLI HG/GBM 
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MES, a group of high-grade gliomas and glioblastomas of the mesen-
chymal subtypes. The remaining sample was grouped by RACCOON 
with lung adenocarcinoma, likely due to contamination or low tumor  
purity. A true AT/RT target class is not available to OTTER. Fifteen 
of 19 samples are assigned to classes along the T040 CNS branch  
with at least 5% of confidence. AT/RTs also possessed some signal  
of high stemness, yielding a partial match to the mesodermal stem  
high class (T004) in 15 of 19 samples.

We then clustered the group of 21 AT/RTs (19 unseen + 2 high- 
quality samples from the reference cohort) using RACCOON together 
with samples from the CNS class (Supplementary Fig. 17).

All AT/RTs clustered together within a new class ( just below the 
high-grade gliomas T034, in the same lineage as T040). This demon-
strates that a critical threshold of AT/RTs was reached to create a new 
subtype. To study what the exact threshold is, we performed subset-
ting experiments. Clustering was repeated using different numbers of 
AT/RT samples along with 100 other CNS tumors, both of which had 
been randomly selected five separate times. TPEs were used to speed 
up the search for repeated runs. We computed the adjusted mutual 
information (AMI) score on the clustering result by assuming a perfect 
separation of AT/RTs from all other CNS samples as ground truth, to 
assess how close the resulting partition was to having an AT/RT-only 
class (Supplementary Fig. 17).

Population characteristics
We included several publicly available, uniformly processed cancer 
transcriptomes. The tools described are blinded to the sex of the par-
ticipants whose samples comprise the input dataset. They rely on gene 
expression data from the protein-coding transcriptome and were not 
explicitly trained to recognize sex-chromosome-associated genes. No 
clinical data were included in the training. To our knowledge, gender 
identity was not recorded or considered in any of the contributing 
datasets. Furthermore, the data are not disaggregated by sex from the 
original institutions. A few cancer histotypes identified by clustering 
are biased (for example, breast cancer) or exclusive to one sex (for 
example, testicular, ovarian and uterine cancers), and genes on sex 
chromosomes may play a substantial role in their pathophysiologies 
(Extended Data Figs. 2 and 3), yet their transcriptional profiles were not 
the focus of this work. Although the proportions of the sexes have been 
noted in the clusters annotation, sex differences did not reach signifi-
cance in clusters discussed in this work and were, thus, not reported.

KiCS classification review
Occasionally, samples from KiCS have been labeled as ‘concordant in 
the absence of reference’. In this group, we are counting samples that 
were assigned to families of tumors close to the target in the absence 
of a strictly matching subtype. We chose a conservative approach in 
evaluating these. We counted only those tumors: (1) that matched to 
a tumor subtype of the expected cell type or tissue of origin to that 
of the expected diagnosis; (2) where multiple samples with the same 
diagnosis match the same subtype with the same probability profile; 
or (3) that match a tumor subtype in which we found reference samples 
of the same diagnosis but for which there are currently too few samples 
to create their own class. Finally, each putative match was reviewed by 
a pediatric oncologist to determine whether the data were sufficient to 
consider the diagnosis as being confirmed. In total, 16.5% of the tumors 
were in this category.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Expression counts from the Treehouse Childhood Cancer Initia-
tive (including TARGET and TCGA samples) are publicly available 

(https://treehousegenomics.soe.ucsc.edu/public-data/). Access to 
raw sequences from GTEx (phs000424.vN.pN) and St. Jude Hospital  
(https://www.stjude.cloud/) can be requested to their respective 
institutions. WGS, RNA-seq and methylation data generated as part 
of the Zero Childhood Cancer Program study are available from the 
European Genome-phenome Archive (EGA) under accession number 
EGAS00001004572. The KiCS cohort is available under study number 
EGAS00001006034. An EGA account is required to download the data.

Code availability
RACCOON is available as a Python 3 library or can be accessed on 
GitHub at https://github.com/shlienlab/raccoon, along with docu-
mentation. OTTER can be found at https://github.com/shlienlab/otter 
or at the following website: https://otter.ccm.sickkids.ca.
The corresponding annotation of pediatric tumor types can be found 
at https://rna-atlas.github.io/.
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Extended Data Fig. 1 | Classifier scores by model, level, and transcriptional 
family. Validation scores obtained by the randomized 5 × 5-fold validation. 
These include accuracy (dark blue), area under the curve precision-recall 
(AUCPR, orange), precision (blue) recall (green) and hierarchical similarity H 
(dashed grey). All averaged scores are calculated as micro (m) averages. The 
total reference population of each class is also shown as shaded bars (blue). 
These scores are shown per model in the ensemble (a), where the best model 

for each score is marked by a circle, per level (b), and per class, including only 
classes at the first level of the hierarchy (c). The ensemble reaches 0.955 5 × 5-fold 
validation median MAUCPR and 0.997 MF1 after calibration. In the per-level 
breakdown, MAUCPR goes from 0.998 for major tumor type classes, to 0.845 at 
its minimum for classes at the deepest level. The accuracy scores improve around 
level 7, due to the asymmetrical structure of the classes’ hierarchy. Only CNS and 
leukemias have subtypes extending beyond that level.
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Extended Data Fig. 2 | Pan-cancer hierarchy. Hierarchical list of the clusters obtained with RACCOON on the reference tumor dataset. For each class, sex ratio, age 
distribution, code, population, and short name are shown. These clusters have been then used as target classes for the CNN classifier.
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Extended Data Fig. 3 | Hierarchy of all normal tissue classes. Hierarchical list of the clusters obtained with RACCOON on the reference normal dataset. For each 
class, sex ratio, age distribution, code, population, and short name are shown. These clusters have been then used as target classes for the CNN classifier.
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Extended Data Fig. 4 | UMAP projection of normal tissue samples. (a) 2d 
UMAP representation of the hierarchical branch of healthy normal tissue  
samples included in our study. Different families are shown with different colors. 
(b) Dendrogram representing the same hierarchy, showing the connection 
among different normal tissue subtypes. As for the neoplastic hierarchy, samples 

are first grouped by tissue with exceptions. For example, breast tissue samples 
with a majority population of adipose cells by histology are grouped with other 
adipose-rich samples (N030), while those with most mammary gland tissue are 
found with other glands (N008).
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Extended Data Fig. 5 | Entropy distribution Ewing and BCOR-rearranged 
sarcoma. Comparison of gene entropy distributions for Ewing (top) and BCOR-
rearranged (bottom) sarcoma clusters. genes summing to the bottom 99% of 
cumulative DeepLIFT importance score are shown in blue, while in orange are a 

selected subset of tumor-defining genes (EWSR1-FL1 targets as defined by Zhang 
et al. Cancer Res. 2005, and BCOR respectively). P values from the two-tailed 
Mann–Whitney U-test are shown.
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Extended Data Fig. 6 | Comparison between high stemness and high immune 
activity mesodermal tumors. (a) stemness (top of each class) and immune 
activity (bottom of each class) scores distributions for the two main mesodermal 
tumor classes, T002 and T003. P values are from two-tailed Mann–Whitney 
U-tests. (b) Median normalized enrichment score for the top differentially 
regulated sets between T002 and T003 (GSEA one-sided hypergeometric test 
fdr < 0.001). (c) Tumor purity as a function of the stemness score across TCGA 

samples in T002 (in blue) and T003 (in orange). No correlation was found 
between the two values (Pearson’s correlation 0.15, two-tailed t-distribution p-val 
8.64e-04). (d) Fractional immune cell type composition breakdown for tumor 
subtypes along the mesodermal hierarchy branches. These results were obtained 
with CIBERSORT and show a diversity of cell type abundances between the two 
groups.
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Extended Data Fig. 7 | BCOR- and CIC-mutated tumors. Summary of 
the findings relating to BCOR-mutated and CIC-mutated tumors. (a) Two-
dimensional UMAP projection of CNS tumors by gene expression, where 
a few representative classes are shown with shades of blue and green. The 
BCOR-mutated class is highlighted in orange (T031). (b) Diagram representing 
canonical BCOR-ITD and BCOR-CCNB3 rearrangements. (c) BCOR expression 
distribution across representative CNS classes, showing a clear overexpression  
in BCOR-mutated samples (T031). (d) The idiosyncratic transcriptional profile  
of BCOR mutations is sufficient to overcome the cell-of-origin attraction during 

the clustering process. The ratio of tumor types within T031, shows that while  
it is mostly composed of CNS tumors, sarcomas are also found in this class.  
(e) Two-dimensional UMAP projection of MESODM STEMhigh tumors by gene 
expression, where a few representative subtypes are shown with shades of blue 
and green. The CIC-mutated class is highlighted in orange (T104). (f) Diagram 
representing the archetypical CIC-DUX4 fusion. (g) MYC expression distribution 
across representative mesodermal classes, showing overexpression in T104. 
(h) As for BCOR-mutated samples, the ratio of tumor types within T104 shows a 
mixture of sarcomas and CNS tumors.
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Extended Data Fig. 8 | Neuroblastoma COX regression and clinical 
information. (a) Cox survival regression hazard coefficients calculated 
on neuroblastoma samples for three main covariates: the transcriptional 
neuroblastoma subtypes, INSS stage and COG risk group. Log-likelihood ratio 
test P values are shown for each covariate. Stratification by MYCN status was also 
included in the regression but failed the proportional hazard assumption test  
(P value = 6.8e-3). All covariates influence positively the hazard ratio, both the 
COG risk group and the transcriptional subtypes (T063, T062, T065, T064) terms 
are significant COG risk group has the most impact on survival with a coefficient 

of 0.73, while the transcriptional subtype hazard ratio is 0.29. Our stratification 
maintains significance in the hazard regression after accounting for the most 
powerful prognostic factors, suggesting it can capture otherwise unexplained 
contributions to the survival behavior and supporting its novelty in prognostics. 
(b) Clinical information from neuroblastoma patient data and its stratification by 
transcriptional subtypes. Shown are the proportion of patients with the following 
characteristics (from top to bottom), COG risk group, ploidy number, diagnosis 
(neuroblastoma or ganglioneuroma), stage and MYCN status.
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Extended Data Fig. 9 | DNA repair pathways. (a) Significantly enriched DNA 
repair pathways in pediatric cancers when compared to adult malignancies. The 
normalized enrichment scores were obtained with TMM-normalized expression 
pre-ranked GSEA. Only sets with one-sided hypergeometric test adjusted P value 
of less than 0.001 are shown. (b) Scatter plot showing values of median class 
entropy as a function of the DNA repair score (See Supplemental Methods for a 

definition). Adult classes are shown in blue, pediatric classes are shown in cyan. 
In red is the result of a linear regression, Pearson’s correlation coefficients and 
one-sided t-test P value are reported. The distributions of the DNA repair score 
for adult and pediatric samples are shown at the top, together with the two-sided 
Mann–Whitney U-test P value giving significance to their separation.
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