2,986 research outputs found

    Electronic and phononic properties of the chalcopyrite CuGaS2

    Full text link
    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev

    Structure of Polyelectrolytes in Poor Solvent

    Full text link
    We present simulations on charged polymers in poor solvent. First we investigate in detail the dilute concentration range with and without imposed extension constraints. The resulting necklace polymer conformations are analyzed in detail. We find strong fluctuations in the number of pearls and their sizes leading only to small signatures in the form factor and the force-extension relation. The scaling of the peak in the structure factor with the monomer density shows a pertinent different behavior from good solvent chains.Comment: 7 pages, 5 figures. submitted to EP

    Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations

    Full text link
    Ab initio RNA secondary structure predictions have long dismissed helices interior to loops, so-called pseudoknots, despite their structural importance. Here, we report that many pseudoknots can be predicted through long time scales RNA folding simulations, which follow the stochastic closing and opening of individual RNA helices. The numerical efficacy of these stochastic simulations relies on an O(n^2) clustering algorithm which computes time averages over a continously updated set of n reference structures. Applying this exact stochastic clustering approach, we typically obtain a 5- to 100-fold simulation speed-up for RNA sequences up to 400 bases, while the effective acceleration can be as high as 100,000-fold for short multistable molecules (<150 bases). We performed extensive folding statistics on random and natural RNA sequences, and found that pseudoknots are unevenly distributed amongst RNAstructures and account for up to 30% of base pairs in G+C rich RNA sequences (Online RNA folding kinetics server including pseudoknots : http://kinefold.u-strasbg.fr/ ).Comment: 6 pages, 5 figure

    Zero Temperature Properties of RNA Secondary Structures

    Full text link
    We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model, that suffers a large degeneracy of the ground state, and models in which the degeneracy has been remove, in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method, where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of models without accidental degeneracy of the ground state we are able to clearly establish the existence of a glassy phase with θ1/3\theta \simeq 1/3.Comment: 20 pages including 9 eps figure

    On the nature of long-range contributions to pair interactions between charged colloids in two dimensions

    Full text link
    We perform a detailed analysis of solutions of the inverse problem applied to experimentally measured two-dimensional radial distribution functions for highly charged latex dispersions. The experiments are carried out at high colloidal densities and under low-salt conditions. At the highest studied densities, the extracted effective pair potentials contain long-range attractive part. At the same time, we find that for the best distribution functions available the range of stability of the solutions is limited by the nearest neighbour distance between the colloidal particles. Moreover, the measured pair distribution functions can be explained by purely repulsive pair potentials contained in the stable part of the solution.Comment: 6 pages, 5 figure

    Bebida contendo abacaxi (Ananas comosus) e beterraba (Beta vulgaris) para crianças: tratar termicamente ou não?

    Get PDF
    Edição dos Resumos do VI Congresso Latinoamericano e XII Congresso Brasileiro de Higienistas de Alimentos, II Encontro Nacional de Vigilância das Zoonoses, IV Encontro do Sistema Brasileiro de Inspeção de Produtos de Origem Animal, Gramado, abr. 2013

    Like-charge attraction through hydrodynamic interaction

    Full text link
    We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen and Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
    corecore