417 research outputs found

    Genetic Inactivation of Chlamydia trachomatis Inclusion Membrane Protein CT228 Alters MYPT1 Recruitment, Extrusion Production, and Longevity of Infection

    Get PDF
    Chlamydia trachomatis is an obligate intracellular pathogen with global health and economic impact. Upon infection, C. trachomatis resides within a protective niche, the inclusion, wherein it replicates and usurps host cell machinery and resources. The inclusion membrane is the key host-pathogen interface that governs specific protein-protein interactions to manipulate host signaling pathways. At the conclusion of the infection cycle, C. trachomatis exits the host cell via lysis or extrusion. Extrusion depends on the phosphorylation state of myosin light chain 2 (MLC2); the extent of phosphorylation is determined by the ongoing opposing activities of myosin phosphatase (MYPT1) and myosin kinase (MLCK). Previously, it was shown that MYPT1 is recruited to the inclusion and interacts with CT228 for regulation of host cell egress. In this study, we generated a targeted chromosomal mutation of CT228 (L2-ΔCT228) using the TargeTron system and demonstrate a loss of MYPT1 recruitment and increase in extrusion production in vitro. Mutation of CT228 did not affect chlamydial growth in cell culture or recruitment of MLC2. Moreover, we document a delay in clearance of L2-ΔCT228 during murine intravaginal infection as well as a reduction in systemic humoral response, relative to L2-wild type. Taken together, the data suggest that loss of MYPT1 recruitment (as a result of CT228 disruption) regulates the degree of host cell exit via extrusion and affects the longevity of infection in vivo

    A new Holocene sea-level record for Singapore

    Get PDF
    Relative sea-level (RSL) records from far-field regions distal from ice sheets remain poorly understood, particularly in the early Holocene. Here, we extended the Holocene RSL data from Singapore by producing early Holocene sea-level index points (SLIPs) and limiting dates from a new ~40 m sediment core. We merged new and published RSL data to construct a standardized Singapore RSL database consisting of 88 SLIPs and limiting data. In the early Holocene, RSL rose rapidly from −21.0 to −0.7 m from ~9500 to 7000 cal. yrs. BP. Thereafter, the rate of RSL rise decelerated, reaching a mid-Holocene highstand of 4.0 ± 4.5 m at 5100 cal. yrs. BP, before falling to its present level. There is no evidence of any inflections in RSL when the full uncertainty of SLIPs is considered. When combined with other standardized data from the Malay-Thai Peninsula, our results also show substantial misfits between regional RSL reconstructions and glacial isostatic adjustment (GIA) model predictions in the rate of early Holocene RSL rise, the timing of the mid-Holocene highstand and the nature of late-Holocene RSL fall towards the present. It is presently unknown whether these misfits are caused by regional processes, such as subsidence of the continental shelf, or inaccurate parameters used in the GIA model

    Local festivals, social capital and sustainable destination development: experiences in East London

    Get PDF
    This paper explores the nature of social capital arising from engagement in local festivals and the implications of this for the social sustainability of an emerging destination. Two case studies are developed from a longitudinal research project which investigates local festivals staged in the Hackney Wick and Fish Island area adjacent to Queen Elizabeth Olympic Park in East London, UK between 2008 and 2014. This area has been directly affected by extensive development and regeneration efforts associated with the staging of the London 2012 Olympic Games. The two festivals considered here respond to the challenges and opportunities arising for local people as the area changes. One festival aims to foster a sense of community by creating shared experiences and improving communication across diverse groups. The other draws together the cultural community, links them to the opportunities arising as the area emerges as a destination, and attracts visitors. These festivals increase social capital in the area, but its distribution is very uneven. The accrual of social capital exacerbates existing inequalities within the host community, favouring the “haves” at the expense of the “have nots”. There are tensions between the development of social capital and social sustainability in this emerging destination

    Outreach:Impact on Skills and Future Careers of Postgraduate Practitioners Working with the Bristol ChemLabS Centre for Excellence in Teaching and Learning

    Get PDF
    Postgraduate engagement in delivering outreach activities is more commonplace than it once was. However, the impact on postgraduate students (typically studying for a Ph.D. degree) of participating in the delivery of these outreach activities has rarely, if ever, been recorded. The Bristol ChemLabS Outreach program has been running for ca. 17 years, and in that time, many postgraduate students have been involved (approximately 500), with around 250 typically for up to 3 years. We sought to investigate the impact of outreach engagement on postgraduate alumni who were involved in the program for over 3 years (32) and how the experiences and training of the outreach program had impacted on their careers postgraduation. Thirty of the 32 postgraduates engaged and ∼70% reported that their outreach experience had influenced their decision making on future careers. Many respondents reported that the skills and experiences gained through outreach participation had contributed to success in applying for and interviewing at their future employers. All respondents reported that outreach had helped them to develop key skills that were valued in the workplace, specifically, communication, teamwork, organizational skills, time planning, event planning, and event management. Rather than a pleasant distraction or an opportunity to supplement income, all participants noted that they felt there were many additional benefits and that this was time well spent. Outreach should not be viewed as a distraction to science research but rather an important enhancement to it provided that the program is well constructed and seeks to develop those delivering the outreach activities

    Stable stem enabled Shannon entropies distinguish non-coding RNAs from random backgrounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The computational identification of RNAs in genomic sequences requires the identification of signals of RNA sequences. Shannon base pairing entropy is an indicator for RNA secondary structure fold certainty in detection of structural, non-coding RNAs (ncRNAs). Under the Boltzmann ensemble of secondary structures, the probability of a base pair is estimated from its frequency across all the alternative equilibrium structures. However, such an entropy has yet to deliver the desired performance for distinguishing ncRNAs from random sequences. Developing novel methods to improve the entropy measure performance may result in more effective ncRNA gene finding based on structure detection.</p> <p>Results</p> <p>This paper shows that the measuring performance of base pairing entropy can be significantly improved with a constrained secondary structure ensemble in which only canonical base pairs are assumed to occur in energetically stable stems in a fold. This constraint actually reduces the space of the secondary structure and may lower the probabilities of base pairs unfavorable to the native fold. Indeed, base pairing entropies computed with this constrained model demonstrate substantially narrowed gaps of Z-scores between ncRNAs, as well as drastic increases in the Z-score for all 13 tested ncRNA sets, compared to shuffled sequences.</p> <p>Conclusions</p> <p>These results suggest the viability of developing effective structure-based ncRNA gene finding methods by investigating secondary structure ensembles of ncRNAs.</p

    Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer\u27s Disease Progression

    Get PDF
    Alzheimer\u27s disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aβ-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-β and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aβ-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Incorporation of uranium into hematite during crystallization from ferrihydrite

    Get PDF
    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite the results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. © 2014 American Chemical Society

    Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia

    Get PDF
    NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).</p

    Perioperative Quality Initiative (POQI) consensus statement on the physiology of blood pressure control as applied to perioperative medicine.

    Get PDF
    Background: A multi-disciplinary, international working subgroup of the Third Perioperative Quality Initiative (POQI) consensus meeting reviewed the (patho)physiology and measurement of arterial blood pressure (ABP), as applied to perioperative medicine. Methods: We addressed predefined questions by undertaking a modified Delphi analysis, in which primary clinical research and review articles were identified using MEDLINE. Strength of recommendations, where applicable, were graded by NICE guidelines. Results: Perioperative ABP management is a physiologically-complex challenge influenced by multiple factors: (i) ABP is the input pressure to organ blood flow, but is not the sole determinant of perfusion pressure; (ii) blood flow is often independent of changes in perfusion pressure, due to autoregulatory changes in vascular resistance; (iii) microvascular dysfunction uncouples microvascular blood flow from ABP (haemodynamic incoherence) From a practical clinical perspective, we identified that: (i) ambulatory measurement is the optimal method to establish baseline ABP; (ii) automated and invasive ABP measurements have inherent physiological and technical limitations; (iii) individualised ABP targets may change over time, especially during the perioperative period. There remains a need for research in non-invasive, continuous arterial pressure measurements, macro- and microcirculatory control, regional perfusion pressure measurement and the development of sensitive, specific and continuous measures of cellular function to evaluate blood pressure management in a physiologically coherent manner. Conclusion: The multivariable, complex physiology contributing to dynamic changes in perioperative ABP may be underappreciated clinically. The frequently unrecognised dissociation between ABP, organ blood flow, microvascular and cellular function requires further research that develops a more refined, contextualized clinical approach to this routine measurement
    corecore