1,653 research outputs found
Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation
The notion of quiescence - the absence of outputs - is vital in both
behavioural modelling and testing theory. Although the need for quiescence was
already recognised in the 90s, it has only been treated as a second-class
citizen thus far. This paper moves quiescence into the foreground and
introduces the notion of quiescent transition systems (QTSs): an extension of
regular input-output transition systems (IOTSs) in which quiescence is
represented explicitly, via quiescent transitions. Four carefully crafted rules
on the use of quiescent transitions ensure that our QTSs naturally capture
quiescent behaviour.
We present the building blocks for a comprehensive theory on QTSs supporting
parallel composition, action hiding and determinisation. In particular, we
prove that these operations preserve all the aforementioned rules.
Additionally, we provide a way to transform existing IOTSs into QTSs, allowing
even IOTSs as input that already contain some quiescent transitions. As an
important application, we show how our QTS framework simplifies the fundamental
model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582
Modelling and analysis of Markov reward automata
Costs and rewards are important ingredients for many types of systems, modelling critical aspects like energy consumption, task completion, repair costs, and memory usage. This paper introduces Markov reward automata, an extension of Markov automata that allows the modelling of systems incorporating rewards (or costs) in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Rewards come in two flavours: action rewards, acquired instantaneously when taking a transition; and state rewards, acquired while residing in a state. We present algorithms to optimise three reward functions: the expected cumulative reward until a goal is reached, the expected cumulative reward until a certain time bound, and the long-run average reward. We have implemented these algorithms in the SCOOP/IMCA tool chain and show their feasibility via several case studies
A Multi-Wavelength Study of Sgr A*: The Role of Near-IR Flares in Production of X-ray, Soft -ray and Sub-millimeter Emission
(abridged) We describe highlights of the results of two observing campaigns
in 2004 to investigate the correlation of flare activity in Sgr A* in different
wavelength regimes, using a total of nine ground and space-based telescopes. We
report the detection of several new near-IR flares during the campaign based on
{\it HST} observations. The level of near-IR flare activity can be as low as
mJy at 1.6 m and continuous up to about 40% of the total
observing time. Using the NICMOS instrument on the {\it HST}, the {\it
XMM-Newton} and CSO observatories, we also detect simultaneous bright X-ray and
near-IR flare in which we observe for the first time correlated substructures
as well as simultaneous submillimeter and near-IR flaring. X-ray emission is
arising from the population of near-IR-synchrotron-emitting relativistic
particles which scatter submillimeter seed photons within the inner 10
Schwarzschild radii of Sgr A* up to X-ray energies. In addition, using the
inverse Compton scattering picture, we explain the high energy 20-120 keV
emission from the direction toward Sgr A*, and the lack of one-to-one X-ray
counterparts to near-IR flares, by the variation of the magnetic field and the
spectral index distributions of this population of nonthermal particles. In
this picture, the evidence for the variability of submillimeter emission during
a near-IR flare is produced by the low-energy component of the population of
particles emitting synchrotron near-IR emission. Based on the measurements of
the duration of flares in near-IR and submillimeter wavelengths, we argue that
the cooling could be due to adiabatic expansion with the implication that flare
activity may drive an outflow.Comment: 48 pages, 12 figures, ApJ (in press
Neuron dynamics in the presence of 1/f noise
Interest in understanding the interplay between noise and the response of a
non-linear device cuts across disciplinary boundaries. It is as relevant for
unmasking the dynamics of neurons in noisy environments as it is for designing
reliable nanoscale logic circuit elements and sensors. Most studies of noise in
non-linear devices are limited to either time-correlated noise with a
Lorentzian spectrum (of which the white noise is a limiting case) or just white
noise. We use analytical theory and numerical simulations to study the impact
of the more ubiquitous "natural" noise with a 1/f frequency spectrum.
Specifically, we study the impact of the 1/f noise on a leaky integrate and
fire model of a neuron. The impact of noise is considered on two quantities of
interest to neuron function: The spike count Fano factor and the speed of
neuron response to a small step-like stimulus. For the perfect (non-leaky)
integrate and fire model, we show that the Fano factor can be expressed as an
integral over noise spectrum weighted by a (low pass) filter function. This
result elucidates the connection between low frequency noise and disorder in
neuron dynamics. We compare our results to experimental data of single neurons
in vivo, and show how the 1/f noise model provides much better agreement than
the usual approximations based on Lorentzian noise. The low frequency noise,
however, complicates the case for information coding scheme based on interspike
intervals by introducing variability in the neuron response time. On a positive
note, the neuron response time to a step stimulus is, remarkably, nearly
optimal in the presence of 1/f noise. An explanation of this effect elucidates
how the brain can take advantage of noise to prime a subset of the neurons to
respond almost instantly to sudden stimuli.Comment: Phys. Rev. E in pres
Disorder-Induced Shift of Condensation Temperature for Dilute Trapped Bose Gases
We determine the leading shift of the Bose-Einstein condensation temperature
for an ultracold dilute atomic gas in a harmonic trap due to weak disorder by
treating both a Gaussian and a Lorentzian spatial correlation for the quenched
disorder potential. Increasing the correlation length from values much smaller
than the geometric mean of the trap scale and the mean particle distance to
much larger values leads first to an increase of the positive shift to a
maximum at this critical length scale and then to a decrease.Comment: Author information under
http://www.theo-phys.uni-essen.de/tp/ags/pelster_di
A variability study of the Seyfert 2 galaxy NGC 6300 with XMM-Newton
We present the results of timing analysis of the XMM-Newton observation of
the Seyfert 2 galaxy NGC 6300. The hard X-ray spectrum above 2 keV consists of
a Compton-thin-absorbed power law, as is often seen in Seyfert 2 galaxies. We
clearly detected rapid time variability on a time scale of about 1000 s from
the light curve above 2 keV. The excess variance of the time variability
(sigma2_RMS) is calculated to be ~0.12, and the periodogram of the light curve
is well represented by a power law function with a slope of 1.75. In contrast
with previous results from Seyfert 2 nuclei, these variability characteristics
are consistent with those of Seyfert 1 galaxies. This consistency suggests that
NGC 6300 has a similar black hole mass and accretion properties as Seyfert 1
galaxies. Using the relation between time variability and central black hole
mass by Hayashida et al. (1998), the black hole mass of NGC 6300 is estimated
to be ~2.8x10^5 Mo. Taking uncertainty of this method into account, the black
hole mass is less than 10^7 Mo. Taking the bolometric luminosity of 3.3x10^43
erg/s into consideration, this yields an accretion rate of > 0.03 of the
Eddington value, and comparable with estimates from Seyfert 1 galaxies using
this method. The time variability analysis suggests that NGC 6300 actually has
a Seyfert 1 nucleus obscured by a thick matter, and more generally provides a
new pillar of support for the unified model of Seyfert galaxies based on
obscuration.Comment: 11 pages, 6 figures, accepted for publication in Ap
Reducing Uncertainties in a Wind-Tunnel Experiment using Bayesian Updating
We perform a fully stochastic analysis of an experiment in aerodynamics. Given estimated uncertainties on the principle input parameters of the experiment, including uncertainties on the shape of the model, we apply uncertainty propagation methods to a suitable CFD model of the experimental setup. Thereby we predict the stochastic response of the measurements due to the experimental uncertainties. To reduce the variance of these uncertainties a Bayesian updating technique is employed in which the uncertain parameters are treated as calibration parameters, with priors taken as the original uncertainty estimates. Imprecise measurements of aerodynamic forces are used as observational data. Motivation and a concrete application come from a wind-tunnel experiment whose parameters and model geometry have substantial uncertainty. In this case the uncertainty was a consequence of a poorly constructed model in the pre-measurement phase. These methodological uncertainties lead to substantial uncertainties in the measurement of forces. Imprecise geometry measurements from multiple sources are used to create an improved stochastic model of the geometry. Calibration against lift and moment data then gives us estimates of the remaining parameters. The effectiveness of the procedure is demonstrated by prediction of drag with uncertainty
The nature of the intranight variability of radio-quiet quasars
We select a sample of 10 radio-quiet quasars with confirmed intranight
optical variability and with available X-ray data. We compare the variability
properties and the broad band spectral constraints to the predictions of
intranight variability by three models: (i) irradiation of an accretion disk by
a variable X-ray flux (ii) an accretion disk instability (iii) the presence of
a weak blazar component. We concluded that the third model, e.g. the blazar
component model, is the most promising if we adopt a cannonball model for the
jet variable emission. In this case, the probability of detecting the
intranight variability is within 20-80%, depending on the ratio of the disk to
the jet optical luminosity. Variable X-ray irradiation mechanism is also
possible but only under additional requirement: either the source should have a
very narrow Hbeta line or occasional extremely strong flares should appear at
very large disk radii.Comment: MNRAS (in press
Flexible access to conformationally-locked bicyclic morpholines
A preparatively accessible route to a series of conformationally-locked bicyclic morpholines has been developed. This flexible approach allows for diversification in order for a small array of lead-like scaffolds to be synthesised from readily available key building blocks
Characterization of the Crab Pulsar's Timing Noise
We present a power spectral analysis of the Crab pulsar's timing noise,
mainly using radio measurements from Jodrell Bank taken over the period
1982-1989. The power spectral analysis is complicated by nonuniform data
sampling and the presence of a steep red power spectrum that can distort power
spectra measurement by causing severe power ``leakage''. We develop a simple
windowing method for computing red noise power spectra of uniformly sampled
data sets and test it on Monte Carlo generated sample realizations of red
power-law noise. We generalize time-domain methods of generating power-law red
noise with even integer spectral indices to the case of noninteger spectral
indices. The Jodrell Bank pulse phase residuals are dense and smooth enough
that an interpolation onto a uniform time series is possible. A windowed power
spectrum is computed revealing a periodic or nearly periodic component with a
period of about 568 days and a 1/f^3 power-law noise component with a noise
strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency
range 0.003 - 0.1 cycles/day. This result deviates from past analyses which
characterized the pulse phase timing residuals as either 1/f^4 power-law noise
or a quasiperiodic process. The analysis was checked using the Deeter
polynomial method of power spectrum estimation that was developed for the case
of nonuniform sampling, but has lower spectral resolution. The timing noise is
consistent with a torque noise spectrum rising with analysis frequency as f
implying blue torque noise, a result not predicted by current models of pulsar
timing noise. If the periodic or nearly periodic component is due to a binary
companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense
- …