42 research outputs found
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study
We report results of density-functional theory calculations on the
structural, magnetic, and electronic properties of (1x1)-structures of Co on
Cu(001) for coverages up to two monolayers. In particular we discuss the
tendency towards phase separation in Co islands and the possibility of
segregation of Cu on top of the Co-film. A sandwich structure consisting of a
bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy
configuration. We also discuss a bilayer c(2x2)-alloy which may form due to
kinetic reasons, or be stabilized at strained surface regions. Furthermore, we
study the influence of magnetism on the various structures and, e.g., find that
Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Individual dietary specialization in a generalist predator: A stable isotope analysis of urban and rural red foxes
Some carnivores are known to survive well in urban habitats, yet the underlying behavioral tactics are poorly understood. One likely explanation for the success in urban habitats might be that carnivores are generalist consumers. However, urban populations of carnivores could as well consist of specialist feeders. Here, we compared the isotopic specialization of red foxes in urban and rural environments, using both a population and an individual level perspective. We measured stable isotope ratios in increments of red fox whiskers and potential food sources. Our results reveal that red foxes have a broad isotopic dietary niche and a large variation in resource use. Despite this large variation, we found significant differences between the variance of the urban and rural population for δ13C as well as δ15N values, suggesting a habitat-specific foraging behavior. Although urban regions are more heterogeneous regarding land cover (based on the Shannon index) than rural regions, the dietary range of urban foxes was smaller compared with that of rural conspecifics. Moreover, the higher δ13C values and lower δ15N values of urban foxes suggest a relatively high input of anthropogenic food sources. The diet of most individuals remained largely constant over a longer period. The low intraindividual variability of urban and rural red foxes suggests a relatively constant proportion of food items consumed by individuals. Urban and rural foxes utilized a small proportion of the potentially available isotopic dietary niche as indicated by the low within-individual variation compared to the between-individual variation. We conclude that generalist fox populations consist of individual food specialists in urban and rural populations at least over those periods covered by our study